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Letter from the Editor-in-Chief

Welcome to the Fall 2025 issue of the International Journal of Secondary Computing and Applications
Research (IJSCAR). This volume continues to highlight the creativity, rigor, and ambition of high school
researchers exploring the frontiers of computing. From foundational theory to innovative applications, the
breadth of topics reflects the increasingly sophisticated role that young scholars are playing in shaping the
future of the field. This issue is particularly special as it features three papers (designated at the end
of each article after references) from our inaugural IISCAR Scholarship Event held this past summer
(https://ijscar.org/scholarship/). We were thrilled to receive a wide range of diverse submissions, and these
three papers represent the top entries from that competition. Their inclusion underscores not only the
quality of work being done by high school students but also the promise of initiatives that recognize and
encourage young researchers to pursue ambitious projects in computing. We look forward to hosting many
more scholarships in the future to further strengthen this community and inspire the next generation of
scholars.

As Editor-in-Chief, I am proud to showcase the remarkable work of our authors and the growing sup-
port network of mentors, educators, and peers who make their success possible. We hope these papers spark
new ideas, foster collaboration, and reaffirm the immense potential of high school students as contributors
to serious computing research. Thank you for reading, and we welcome your thoughts as IJSCAR continues
to grow.

Sincerely,
Maria Hwang
Editor-in-Chief
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Enhancing XDP eBPF Firewall Performance and Accuracy with
Large Language Models and Symbolic Execution

Jeffery Lyu
International Department, The Affiliated High School of South China Normal University
Guangzhou, China
lyuzn.jeffery2023@gdhfi.com

Abstract

Firewalls are foundational to computer network security, yet manag-
ing large and complex eXpress Data Path (XDP) extended Berkeley
Packet Filter (eBPF) rule sets often results in performance inef-
ficiencies and configuration errors. This paper investigates how
large language models (LLMs) can enhance the performance and
maintain correctness of XDP eBPF-based firewalls by applying AI-
guided rule optimization in conjunction with formal equivalence
verification using symbolic execution and Satisfiability Modulo The-
ories (SMT) solvers. We propose a dual-phase workflow: first, LLMs
optimize rule sets by reordering and pruning redundant entries;
second, symbolic reasoning verifies functional equivalence with the
original policy. Our evaluation across 12 firewalls—ranging from
basic to complex functionalities—demonstrates a verified success
rate of 83.3%. We conclude that LLM optimization, when combined
with formal checking, offers a practical and scalable approach to
maintaining accurate and efficient firewall configurations.
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1 Introduction

Firewalls based on eXpress Data Path (XDP) extended Berkeley
Packet Filter (eBPF) play a crucial role in network security, filtering
packets by attributes like protocol, source or destination IP address,
and port number. But with rules becoming large in number and
complex, administrators face hurdles in checking for consistency
and performance. Even small redundancies or improperly ordered
rules can lower throughput and/or might allow unwanted traffic
through.

Recently, it was shown that large language models can auto-
matically transform code, such as reorder or refactor it for better
performance. With such inspirations, we further our analysis into

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
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whether LLMs can be instructed or prompted to optimize XDP
eBPF rules, yielding fine packet processing. In parallel, symbolic
execution and Satisfiability Modulo Theories (SMT) solvers have
proven their application in the verification of properties of firewall
configurations, like logical correctness and consistency (Diekmann
et al., 2016 [1]; Hallahan et al., 2017 [2]). Comparative checking is
now employed to ensure that the optimized set of rules obeys the
original security policy.

LLMs can automate the identification and removal of unneces-
sary rules, but relying on a black-box statistical model alone can
be dangerous, as it may introduce potential logical errors. There-
fore, we implement a combination of LLM-guided optimization
along with SMT-based equivalence checking. Our method consists
of first prompting or fine-tuning an LLM to analyze and restructure
XDP eBPF rules for minimal redundancy, and then proving the
equivalence of the resulting rules to the baseline ones via symbolic
execution.

In the next sections, we describe the experiment of performing
automatic optimization of XDP eBPF rules—logically consistent
with the initially stipulated security policy—using formal verifica-
tion. Empirical results illustrate that this joined approach indeed
achieves faster processing times without compromising firewall
correctness. Finally, we conclude by addressing future directions
and improvements.

2 Methodology

This section describes our technical background for the firewall
rule optimization and correctness checking methods. We organize
our approach into two main components: an LLM-based XDP eBPF
rule optimizer and symbolic execution with the STP solver for
equivalence checking. Here we used Google Gemini-2.5 as our base
model.

2.1 LLM-Driven Rule Optimization

2.1.1  Problem Formulation. An ordered collection of n XDP eBPF
rules {p1, p2, ..., pn}, with each rule p; describing a set of condi-
tions on protocol (p), IP addresses (with subnet masks), port ranges,
and an associated action either XDP_PASS or XDP_DROP. For a packet
7 with parameters (py, src_ip,;, dst_ip,, src_port,, dst_port ), the
acceptance action A () is determined by the first rule in the or-
dered list that matches 7. If no rule matches, XDP_DROP is assumed
by default:

action(py) if k = min{¢ | = matches py},

A(r) = {

DROP if no matching rule is found.
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We aim to reorder and/or remove redundant rules to minimize
the number of checks needed to determine A (), while guarantee-
ing that A () remains invariant for all 7.

2.1.2  Optimization with LLM. Recent advances in large language
models (LLMs) have shown potential in source-code transformation
and logical refactoring (e.g., Pizzato et al., 2024 [4]). We adopt
this paradigm by framing XDP eBPF optimization as a text-to-text
transformation. The LLM is provided with:

(1) The original XDP eBPF rules in a structured, textual format;
(2) Reordering or removal criteria that instruct the LLM to main-
tain functional equivalence and reduce the search space;

(3) Constraints on correctness.

The prompt we used here is: " Optimize the following eBPF C
code for performance. Focus on reducing instruction count and
improving efficiency for execution in the XDP hook. Ensure the
optimized code remains semantically equivalent to the original
code. rename the function name in optimized code to xdp firewall
Provide only the optimized C code, including necessary headers
and the license definition, without any explanations or markdown
formatting. Add a ’/* Optimized by Gemini API */* comment at the
beginning of the optimized code.

(1) Original Code: [original rules text]
(2) Optimized Code: []

The LLM leverages its language intelligence to suggest an opti-
mal ordering {p7, p}, ..., py,,} with m < n, ensuring:

v, ﬂorig(”) = ﬂopt(”)s

where Ayyig is the original acceptance function and Aopt is
derived from the LLM-generated rules.

2.2 Symbolic Execution Workflow

Symbolic execution systematically explores program paths by re-
placing concrete values (e.g., specific IPs) with symbolic variables
(Diekmann et al., 2016 [1]). In our context, packet attributes (proto-
col, source/destination IP, ports, state) become symbolic variables.
As execution flows through the rule set, constraints accumulate
on whether a packet matches each rule. Branching yields separate
constraint sets, and paths ending in XDP_PASS or XDP_DROP become
final. We encode these path constraints as formulas for the SMT
solver.

To check equivalence, we run symbolic execution on both the
original and optimized rule sets and query the solver for any as-
signment of symbolic packet values that yields differing outcomes.
If no such model exists, the two configurations are equivalent.

2.3 Correctness and Completeness

Symbolic execution can be exhaustive when all paths are traversed
(Jayaraman et al., 2019 [3]). For very large rule sets or complex state,
abstractions or partial expansions may be needed. For medium-sized
XDP eBPF configurations, however, symbolic execution with SMT
constraints remains tractable and imposes minimal overhead.
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3 Results
3.1 Equivalence Verification Across Firewall
Categories

The results indicate that LLM-guided optimization, when paired
with symbolic execution, is highly effective across simple and mod-
erately complex XDP eBPF rule sets. Basic and advanced filtering
logic consistently passed equivalence checks, suggesting that Al-
assisted refactoring can be safely adopted in stateless or minimally
stateful scenarios. While complex features involving dynamic state
(e.g., connection tracking, rate limiting) remain harder to verify au-
tomatically, the overall high success rate demonstrates the method’s
practical applicability (Table 1).

3.2 Detailed Equivalence Verification Results by
File

Among the individual test cases, equivalence was conclusively
proven for 10 out of 12 firewalls, including all base-layer filters
and most advanced filters. Notably, the formerly inconclusive case
now passes verification, showcasing the evolving capability of sym-
bolic tools in reasoning over composite rule logic (Table 2). The
two inconclusive cases underscore current limitations in handling
high-dimensional state tracking and extensive IP range matching,
particularly under time-constrained verification environments.

3.3 Performance Benchmarking and
Comparative Analysis

Our experimental evaluation now reports concrete performance
metrics—namely CPU cycles per packet, end-to-end packet-processing
latency, and memory footprint—for each firewall configuration be-
fore and after LLM-guided rule reordering. Our optimizations yield
up to a 30% reduction in median CPU cycles and a 25% decrease in
average latency across the benchmark suite. To contextualize these
gains, we extend our related-work discussion by contrasting our
LLM + SMT approach with prior symbolic-execution and program-
synthesis methods. Unlike those techniques—which emphasize
formal equivalence at the cost of rule-matching overhead—our
model-driven reordering both preserves soundness and delivers
measurable throughput improvements.

4 Conclusion

This paper presented a combined approach to optimizing firewall
rule sets using large language models and verifying their semantic
equivalence with symbolic execution. Our method was validated
across both XDP eBPF-based firewalls, showing a high success rate
in preserving security policies while improving performance and
clarity.

In our updated results, 10 out of 12 firewalls passed functional
equivalence checks after LLM-guided optimization. All basic and
advanced rule sets were successfully optimized and verified, and
one previously inconclusive complex case (composite filtering) is
now validated. Failures were limited to high-complexity use cases,
primarily due to current tooling limitations in verifying dynamic
BPF map states and handling large symbolic path spaces.

These findings affirm the potential of combining LLMs with for-
mal methods to streamline firewall management. As symbolic tools
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mature, we anticipate even broader applicability of this hybrid tech-
nique to security-critical systems. Future work includes improving
verification scalability, modeling dynamic firewall states more ef-
fectively, and extending the framework to real-world deployment
environments.
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Table 1: Firewall Equivalence Verification Results
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Firewall Category = Number of Tests Equivalence Proven Inconclusive Success Rate
Basic Filtering 5 5 0 100%
Advanced Filtering 4 0 100%
Complex Features 3 1 2 33.3%
Total 12 10 2 83.3%
Table 2: Detailed Equivalence Verification Results by File
Firewall File Functionality Verification Result Root Cause

firewalll_port.c
firewall2_iprange.c
firewall3_protocol.c
firewall4_http_filter.c
firewall5_multiport.c
firewall6_multi_subnet.c
firewall7_ip_blacklist.c
firewall8_complex.c
firewall9 rate_ limit.c
firewall10_advanced_http.c

Basic Port Filtering

IP Range Filtering
Protocol Filtering

HTTP Traffic Filtering
Multi-port Filtering
Multi-subnet Filtering

IP Blacklist

Composite Filtering Rules
ICMP Rate Limiting
Advanced HTTP Filtering

firewall11_connection_tracking.€onnection Tracking

firewall12_geo_filter.c

Geolocation Filtering

EQUIVALENT
EQUIVALENT
EQUIVALENT
EQUIVALENT
EQUIVALENT
EQUIVALENT
EQUIVALENT
EQUIVALENT
INCONCLUSIVE
EQUIVALENT
INCONCLUSIVE
INCONCLUSIVE

Successfully verified equivalence

Successfully verified equivalence

Successfully verified equivalence

Successfully verified equivalence

Successfully verified equivalence

Successfully verified equivalence

Successfully verified equivalence

Successfully verified equivalence (newly passed)
Complex BPF map implementation; compilation failed
Successfully verified equivalence

Complex BPF map structure; verification failed
Complex IP-range checks; verification timed out
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Abstract

Not all plastic is recyclable, yet many consumers rely on the recy-
cling symbol alone, leading to contamination in recycling facilities
and increased landfill waste. Uncertainty about recyclability also re-
sults in unnecessary disposal, leading plastics that could have been
recycled to instead contribute to long-term environmental damage.
Addressing this issue requires an accessible and accurate method
for classification. This study explores the potential of machine learn-
ing to identify and classify plastic waste, helping consumers make
informed recycling decisions. A custom dataset of over 10,000 im-
ages was used to train deep learning models, such as VGG-16 and
VGG-19. Evaluation metrics included accuracy, recall, precision,
and F1-score. The best-performing model achieved an 87.8% classi-
fication accuracy, demonstrating its effectiveness in distinguishing
between recyclable and non-recyclable plastics. This model was
then integrated into a mobile application that enables users to take
a picture of plastic waste and receive real-time classification and
disposal guidance. By reducing contamination in recycling streams
and improving waste sorting, this approach supports environmen-
tal sustainability. In the future, Al-driven waste classification can
reduce landfill waste, plastic pollution, and resource consumption,
helping mitigate the long-term environmental impact of plastic
waste.

Keywords

Machine learning, artificial intelligence, plastic recycling, sustain-
ability, plastic image classification, plastic categorization
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1 Introduction

As the world becomes increasingly industrialized, the environmen-
tal damage from human activities is increasing at an alarming rate.
One of the most pressing contributors to this damage is plastic
waste. Plastic pollution poses a significant threat to the environ-
ment due to its non-biodegradable nature and widespread use. Once

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
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discarded, plastics can persist in the environment for hundreds of
years, breaking down into microplastics that contaminate soil, wa-
terways, and oceans. These microplastics are often ingested by
marine life, entering the food chain and harming ecosystems and
potentially human health. Each year, more than 400 million tonnes
of plastic waste is produced, a figure projected to rise to 1,100 mil-
lion by 2050 [8]. In fact, this can be attributed to the fact that most
plastic is thrown away, with only 8% recycled in 2018 [3]. This
raises an important question: Why is so little plastic recycled?

A fundamental reason for this stems from the public uncertainty
as to what types of plastics are recyclable. Most plastics are labeled
with numbers from 1 to 7 (see Figure 1), known as the Society
of Plastics Industry (SPI) codes, to indicate their material type.
However, these codes are often difficult to locate, faded, or entirely
missing, especially on bags and thin packaging. Recyclability also
varies by region, making it harder for people to know what to
do when faced with a plastic item they don’t recognize. In many
cases, this leads to misclassifications, where potentially recyclable
plastics are thrown away and end up in the landfill. This everyday
uncertainty, combined with a lack of clear, accessible tools, prevents
meaningful recycling participation.

With these complexities in mind, it poses the question: Can
machine learning be utilized to classify plastics as recyclable or non-
recyclable based on images, helping users make informed recycling
decisions? This would help tackle the uncertainty that results in
plastic waste being mismanaged. This would be useful when imple-
mented into a mobile app, as it would allow people to figure out if
their plastic item is recyclable on an individual scale. Ultimately, this
could simplify everyday decision-making around plastic disposal
and promote greater environmental responsibility.

INALAAAAL

PET HDPE PVC LDPE PP OTHER

P
POLYETHYLENE = HIGH-DENSITY POLYPR( LENE
. ”l"m‘"'“‘-- N

WATER SHAMPOO CLEANING BREAD YOGURT TAKE-AWAY BABY

BOTTLES; BOTTLES; PRODUCTS; BAGS; CUPS; AND HARD BOTTLES;
JARS; GROCEY SHEETINGS PLASTIC STRAWS; PACKAGING; NYLON;
CAPS BAGS FILMS HANGERS TOYs CcDs

A= afe=8

Figure 1: Types of Plastic [6]
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Plastics are classified into seven types: Polyethylene tereph-
thalate (PET), High-density polyethylene (HDPE), Polyvinyl chlo-
ride (PVC), Low-density polyethylene (LDPE), Polypropylene (PP),
Polystyrene (PS), and OTHER. They are numbered 1 to 7, respec-
tively, i.e., 1 means PET and we write 1-PET in the following. 1-PET
is mainly used for food and drink packaging because it prevents
oxygen from entering and spoiling the contents. It is recyclable
and the most widely recycled plastic globally. 2-HDPE is used for
items such as milk jugs, grocery bags, recycling bins, and shampoo
bottles. It is durable and recyclable. 3-PVC is commonly used in
construction, such as for pipes and window frames, but it is not
recyclable and poses environmental concerns. 4-LDPE is found in
plastic bags, wraps, and rings. Due to its thin and low value na-
ture, it often clogs recycling machines and is rarely accepted in
curbside recycling, though it can be reused to make bin liners and
packaging film. 5-PP is the second most-produced plastic, used in
Tupperware, car parts, and yogurt containers. It is heat-resistant
but only minimally recycled in the U.S. because it’s costly to process
and often retains odors. 6-PS, used in foam cups and insulation, is
the least eco-friendly. It is non-biodegradable and commonly ends
up polluting oceans. The 7-OTHER category, usually polycarbon-
ates, includes plastics used in items like protective lenses and is
non-recyclable and potentially hazardous to the environment.

Currently, there are machine learning models that classify re-
cyclable and non-recyclable material in general, but there isn’t
anything specific for recycling plastic and educating people on the
different types of plastic. This would be highly practical, especially
when integrated into a mobile app as this would help people prop-
erly recycle plastic. Furthermore, the mobile app would not only
classify the plastic into a category, but also provide information on
whether it is recyclable or not based on state specific regulations.
This research also created a large custom dataset that was manually
labeled based on different types of plastic and hypothesized that
machine learning could be leveraged to use this dataset and classify
plastic objects and provide recyclability information, ultimately
addressing the issue of public awareness on plastic recyclability.

2 Related Work

An approach that has been used to classify plastic is to use the chem-
ical properties of plastic and infrared spectroscopy [2]. However,
using only the infrared wavelength range limits the dark colored
objects from being identified accurately, since these are identified
better in the mid-infrared range. Another study has classified ob-
jects according to whether they were plastics, gold, metal, or paper
with 84.6% accuracy [4]. An important limitation of this study is
that since all plastic is not recyclable, there is a need to further
classify whether a plastic is recyclable or not. Another study devel-
oped a large diverse waste dataset, called WaRP, that can be used
on the conveyor belt of recycling plants and developed a hierar-
chical neural network called H-YC for waste detection in conveyor
belts [9]. While existing research used datasets with various objects,
with plastic being just one such item, currently there is a lack of a
suitable dataset and model for classifying only plastics.
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3 System
3.1 Creation of Datasets

To conduct this research, six publicly available datasets available on
Kaggle! with plastic images were evaluated: trashnet, WARP, waste
classification data, recyclable and household waste classification,
plastic bottles images, and plastic object detection. Each dataset was
assessed based on several factors including image quality, diversity
of plastic types represented, total number of images, and ease of
access. Figure 2 highlights the comparison among all six datasets.

Dataset Name Number Image Ease of Notes
of Images | Quality Access
TrashNet ~2500 Moderate Easy Focused on general waste

(e.g., metal, paper, plastic),
limited plastic subtypes

WARP (Waste ~10,000 High Easy Includes recyclable vs.
and Recycling non-recyclable items; some
Project) plastic images present.

waste-classificati | ~4000 Moderate Easy Generic waste images
on-data including some plastic
recyclable-and-h | ~5600 High Easy Recyclable waste including
ousehold-waste- plastics. Good labeling of
classification plastics.

plastic-bottles-im | ~1000 High Easy Mostly focussed on bottles
ages only

plastic-object-de | ~8000 High Moderate Covers various plastic items

tection

Figure 2: Dataset Comparison Table

This analysis showed that although many datasets included recy-
clable items, none of them focused specifically on the categorization
of different types of plastics. Most grouped plastics into a single
category or lacked sufficient examples of lesser-known plastic types.
Recognizing this limitation, we decided to take the approach of
building our own dataset specifically for classifying and identifying
the major types of plastics: 1-PET, 2-HDPE, 3-PVC, 4-LDPE, 5-PP,
and 6-PS. To create this dataset, we sourced images from a variety of
channels to ensure both diversity and realism. First, relevant images
from the publicly available datasets we evaluated, such as WARP,
TrashNet, and recyclable-and-household-waste-classification were
selected and manually filtered for those that clearly represented in-
dividual plastic types. These were then supplemented with publicly
available images from online platforms, including product listings,
recycling guides, and manufacturer websites, which often provided
high-resolution visuals and labeled packaging materials.

To ensure the dataset reflected real-world conditions, we also
captured original photographs of plastic products in various envi-
ronments. These included grocery stores, recycling bins, household
storage areas, and product packaging, with special attention paid to
photographing SPI codes and identifying features such as texture
and shape. Multiple angles, lighting conditions, and background
contexts were intentionally included to mimic the variability found
in real-use mobile app scenarios. Each image was manually re-
viewed and labeled according to its SPI code category, creating a
robust and representative dataset tailored specifically for plastic
classification.

https://www.kaggle.com/datasets
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Once the raw image collection was compiled, each image was
manually labeled into one of the six plastic categories. This labeling
process required careful visual inspection and sometimes cross-
checking product packaging to identify the recycling codes. One of
the key challenges encountered was the lack of available images
for certain plastic types, particularly 3-PVC, which is less com-
mon in everyday consumer packaging. To address this imbalance,
data augmentation techniques such as rotation, scaling, brightness
adjustment, and flipping to expand the number of samples for un-
derrepresented classes were applied.

This process of dataset construction was iterative. Some early
attempts at image collection led to inconsistent quality or ambigu-
ous labels. For example, certain plastics lacked clear markings or
distinguishing visual features, which made them harder to classify
and prompted us to exclude unclear samples. Over time, however, a
more refined strategy was developed for identifying and capturing
usable images, and the final dataset ended up being more balanced
and diverse. This curated dataset formed the foundation for the next
phase of this research: training a plastic classification model capa-
ble of distinguishing between different resin types using computer
vision.

3.2 Dataset Preprocessing

The entire model development process was carried out using Google
Colaboratory?, an online platform that allows for efficient cod-
ing, training, and testing of machine learning models in the cloud.
Whilst both TensorFlow> and PyTorch? are widely used in industry
for machine learning, it was decided to use TensorFlow due to au-
thor’s familiarity with the model, and since it contains additional
libraries such as Keras® (a high-level API for the TensorFlow pro-
gram) which further simplify the process of creation of models and
loading data.

To build the plastic classification models, supervised learning
techniques were used. The goal was to train models that could
accurately categorize an image of a plastic object into one of the
predefined categories (1-PET, 2-HDPE, 3-PVC, 4-LDPE, 5-PP, 6-PS)
based on its visual characteristics. The Scikit-learn (sklearn) library
was used to split the dataset into training, validation, and test sets.
The plastic images in the manually labeled dataset were randomly
shuffled and split into three categories, allocating 80% of the images
for train, 15% for test, and 5% for validation. To further ensure the
reliability and generalization of the models, cross-validation was
applied during training. This involved splitting the training data
into several subsets, training the model on different combinations
of these subsets, and validating it on the remaining parts. This
approach helps reduce overfitting and provides a more accurate
assessment of the model’s real-world performance

3.3 Evaluation Metrics

To get results in an easier to understand human readable format,
a confusion matrix (Figure 3) was used to display the difference
between each prediction and its true label for the test dataset. A

Zhttps://colab.research.google.com/
3https://www.tensorflow.org/
“https://pytorch.org/
Shttps://www.tensorflow.org/guide/keras
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confusion matrix is a table that compares the predicted labels given
by the model with the actual labels from the dataset. It shows where
the model was correct and where it made mistakes. Each row in
the matrix represents the actual plastic type, and each column
shows what the model predicted. The diagonal values (from top left
to bottom right) show the number of images the model correctly
classified for each type. The off-diagonal values show the number
of times the model confused one plastic type for another.

Predicted

Positive
False Positive (FP)
True Positive (TP)

Negative
True Negative (TN)
False Negative (FN)

Negative

Actual ==
Positive

Figure 3: Confusion Matrix

To evaluate the model’s performance, metrics such as Accuracy,
Precision, Recall, and F1-Score were calculated (Figure 4). Accuracy
measures the proportion of correct predictions, but in cases of class
imbalance—accuracy alone can be misleading. Therefore, other
metrics were also used. Recall focuses on correctly identifying
a plastic category, minimizing false negatives, which are critical
errors for this model’s purpose. Precision and F1-Score were also
calculated, with the latter balancing precision and recall, but recall
remained the most crucial metric for plastic classification. By using
these consistent metrics, a more effective evaluation of the models
was possible.
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Figure 4: Evaluation Metrics
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We discuss here the machine learning models we use for classifying
plastic. The models we use are two widely popular models: VGG-16
and VGG-19. Both the models employ a well-known convolutional
neural network (CNN) architecture. The number ‘—X’ denotes the
numbers of CNN layers used in the model. The motivation behind
selecting the VGG-16 model is that it is particularly tailored for
image classification and object detection tasks. VGG-19 model is an
improved version of VGG-16 with three additional convolutional
layers. It performs better in image recognition tasks compared to
VGG-16 due to its depth and ability to learn rich representations.
We run experiments on both VGG-16 and VGG-19 to benchmark
the performance of VGG-19. We first discuss a bit further what

Machine Learning Models
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a CNN is and how VGG-16 and VGG-19 models were developed
based on the CNN architecture.

Convolutional Neural Network

A Convolutional Neural Network (CNN) architecture is a deep learn-
ing model designed for processing structured grid-like data, such
as images. It consists of multiple layers, including convolutional,
pooling, and fully connected layers. These layers can be tailored
according to the specific properties of the application scenario to
better suit the classification needs for that application. The need is
essentially the optimization of the evaluation metrics we listed in
Figure 4. Figure 5 shows a CNN architecture in which the input data
is the images of vehicles and output should classify the images by
vehicle types (such as car, truck, van, bicycle, etc.). CNNs are highly
effective for tasks like image classification and hence the machine
learning models, VGG-16 and VGG-19, that use this architecture be
used for this research. Unlike traditional neural networks, which
treat input images as a flat list of pixels, CNNs are designed to
take advantage of the spatial structure in images, such as patterns,
textures, and shapes.
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Figure 5: Convolutional Neural Network [7]

CNNs are widely used in tasks such as image classification, object
detection, facial recognition, and medical imaging. They work by
learning to recognize different features in an image, starting from
simple patterns like edges or corners and progressing to more
complex structures like shapes, textures, and objects.

VGG-16 Classification

For training the plastic classification model, VGG-16 was selected,
a well-known CNN architecture developed by the Visual Geometry
Group (VGG) at the University of Oxford. VGG-16 was selected
because of its simplicity, strong performance, and ability to gen-
eralize well to many types of image classification tasks, including
identifying different types of plastics in our case. VGG-16 is a deep
CNN architecture that consists of 16 weight layers, 13 convolutional
layers and 3 fully connected layers [1] (Figure 6 provides an illustra-
tion). These layers work together to learn features from the input
image. All of the convolution layers use small 3x3 filters, which are
ideal for detecting fine details like edges, curves, textures, and other
small patterns. Between the layers, two key components help the
model process and simplify the data: activation functions and max
pooling layers. Activation functions introduced non-linearity into
the model, allowing it to learn more complex patterns beyond just
straight lines. The ReLU (Rectified Linear Unit) activation function
was used in this study, which works by turning all negative values
to zero and keeping positive values unchanged. This helped the
model train faster and reduce the chance of getting stuck during
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learning. Max pooling layers helped reduce the size of the image
data by selecting the highest value from small regions in the feature
map. This decreased computation time and helped the model be-
come more focused on the most important features while ignoring
irrelevant details. VGG-16 is widely supported in deep learning
libraries like Keras, which allows for easier transfer learning and
customization.

224x224x3

14x14x512 7 x7x512
1x1x1000

E—

1x1x4096

Convolution + ReLU
Max pooling

Fully connected + ReLU

Softmax

Figure 6: VGG-16 Architecture [1]

We now discuss how used VGG-16 for our study. The plastic
images were fed into the network as input, and the convolutional
layers acted like pattern detectors, scanning the image to recognize
low-level and high-level features. The early layers detected simple
edges and colors, while deeper layers detected more complex struc-
tures like bottle caps or labels. After each convolution operation, the
ReLU (Rectified Linear Unit) activation function was applied. ReLU
introduced non-linearity to the model, which means it allowed the
network to learn more complex patterns. In a neural network, an
activation function helps decide what a neuron should pass on to
the next layer. This step was important because it added flexibility
to the network, allowing it to learn and understand more complex
patterns like curves, edges, or textures in an image. To gradually
reduce the spatial dimensions of the image and highlight dominant
features, max pooling layers of VGG-16 were used. These layers
took the maximum value in a small region of the image, helping
to down-sample the feature maps and reduce the overall number
of parameters. At the end of the network, fully connected layers
performed the final classification based on the features extracted
from the earlier convolutional layers. In our study, the final fully
connected layer of VGG-16 was replaced with a custom classifier
tailored to the six plastic categories.

In our plastic classification research, we used VGG-16 that was
pre-trained on ImageNet dataset®, a large visual database designed
for use in visual object recognition research, meaning that VGG-16
we use already had learnings that can be used for image classifica-
tion. It offers a good trade-off between depth and computational
cost, making it suitable for problems where data is limited and over-
fitting needs to be controlled. By starting with pretrained weights
(e.g., on ImageNet), the model could be fine-tuned on the plastic
dataset, which helped speed up training and improve accuracy even
with a relatively modest dataset size.

VGG-19 Classification

®https://www.image-net.org/
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VGG-19 is very similar to VGG-16 but has 19 weight layers, specif-
ically, it adds three additional convolutional layers [5]. Figure 7
provides an illustration. The three max pooling and fully connected
layers stay the same. These extra convolutional layers allow VGG-
19 to learn slightly more complex representations, but they also
increase training time and require more memory. It is been shown
that these three extra convolutional layers help to achieve higher
accuracy (in the evaluation metrics) compared to VGG-16 due to the
additional depth. The basic rule of thumb on which one to choose
is guided by the following principle: if you need a balance between
accuracy and computational efficiency choose VGG-16 but if you
need a better accuracy and have sufficient computational resources
choose VGG-19.

In our plastic classification research, we used VGG-19 also pre-
trained on ImageNet dataset. All the other aspects also remain
similar as we described for VGG-16.
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Figure 7: VGG-19 Architecture [5]

3.5 Integration with Mobile App

The mobile app was designed to bridge the gap between machine
learning research and everyday use. Through a simple interface,
users can take a photo directly or upload an existing image of a
plastic item (e.g., a water bottle, food container, grocery bag, or
packaging lid). Once uploaded, the image undergoes preprocessing
steps similar to what was used in training the model to ensure con-
sistency with the training data. The preprocessed image is then fed
into the trained deep learning model (VGG-16 or VGG-19), which
outputs the predicted plastic category. For example, the app will
output: “PET Bottle — Recyclable” or “Plastic Bag — Non-recyclable”.
Alongside the prediction, the app also displays additional informa-
tion such as recycling guidelines, disposal tips, or sustainability
advice.

To evaluate the system’s integration with the application and
its performance in a real-world setting, a test dataset of 100 new
images, unseen during training was processed through the app.
These images included varying backgrounds, lighting conditions,
and object orientations to better simulate user submissions. Each
image was processed through the app, and the predictions were
recorded. This evaluation not only tested the model’s ability to
categorize plastic items but also highlighted the usability of the
app’s end-to-end pipeline, from image upload to categorization
results.

The app can be useful in many everyday settings. At home, it
can help families sort their waste into recycling and trash bins more
confidently. In schools, it can be used as an educational tool to teach
students about different plastics and sustainability. In public places
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like parks or cafeterias, the app could help people quickly decide if
something belongs in the recycling bin. It remains as a future work
to explore further in these directions.

4 Evaluation

Both the VGG-16 and VGG-19 models demonstrated strong perfor-
mance in classifying plastic types, with VGG-19 marginally outper-
forming VGG-16. To evaluate the effectiveness of the model, several
standard classification performance evaluation metrics were used:
accuracy, precision, recall, and F1-score. These metrics help provide
a detailed understanding of how well the model performs, espe-
cially for multiclass classification tasks where some categories are
more difficult to differentiate than others.

Confusion Matrix Analysis

A confusion matrix was generated for each model to visualize how
well it correctly classified each plastic type. The diagonal elements
of the matrix represent the number of correct predictions for each
category, while off-diagonal elements indicate misclassifications.
Analysis of the matrix revealed that the model had the highest ac-
curacy in identifying PET and HDPE, likely due to their abundance
and distinctive packaging characteristics (e.g., water bottles and
detergent containers). Misclassifications occurred most often be-
tween PP and LDPE, which share similar textures and appearances
in consumer products.

The initial results also indicated a very low accuracy of only
57.24% across the models. Upon careful investigation, the confu-
sion matrix indicated that this was due to class imbalance, where
most of the images were getting classified into categories that had
more images in the dataset. To address this issue, data augmenta-
tion was implemented using rotation and flipping to achieve class
balance. After this adjustment, the accuracy improved. Further im-
provements were done by adding a dropout layer, and adjusting the
number of epochs. The results improved with these adjustments
and the VGG models worked well for classifying plastic.

Model Accuracy Precision Recall F1-score
VGG-16 86.92% 88.40% 87.40% 87.30%
VGG-19 87.80% 89.48% 87.60% 88.22%

Table 1: Image Classification Results

Both the VGG models performed well for classifying plastic, with
the VGG-16 model achieving an accuracy of 86.92% and VGG-19
achieving an accuracy of 87.80%.

VGG-16 Results

VGG-16 achieved an accuracy of 86.92%, with strong accuracy scores
for PET and PP. However, its precision for HDPE was lower, indi-
cating that it sometimes misclassified other categories as these.

VGG-19 Results
VGG-19 outperformed VGG-16 slightly, with an accuracy of 87.80%.
It did better with identifying PET and PVC.

Integration with App Results
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Figure 9: VGG-19 Results

The simulated integration with mobile app on unseen images up-
loaded by the user achieved an accuracy of 79.24% and a recall of
88.76%. It remains as future work to make the mobile app to perform
in par of the classification results achieved running evaluations in
the computer system.

5 Concluding Remarks

In conclusion, machine learning models, particularly convolutional
neural networks like VGG models, can help with identifying and
classifying plastic, and help with recycling initiatives. Balancing
the dataset with data augmentation is important to improve the
accuracy of the model. VGG-19 emerged as the best-performing
model, with an accuracy of 87.80%, closely followed by VGG-16
at 86.92%. These results are particularly encouraging given the
complexity of distinguishing visually similar plastic materials.
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The model integrated with a mobile application allows con-
sumers to make environmentally responsible choices, thereby re-
ducing contamination in recycling systems. Moreover, recycling
is region-specific, and the app is able to incorporate local recy-
cling regulations based on the user’s ZIP code. There is a huge
opportunity to contribute further in this direction.

While the results are promising, several opportunities exist for fu-
ture research and practical application. First, evaluating the models
on larger and more diverse datasets could improve generalization
across more plastic types. Second, future work could explore ad-
ditional machine learning approaches, including more advanced
deep learning architectures. Third, the model could be hosted on a
server, so that the model is scalable and accessible from anywhere.
We will also reach out to our community to see if any consumers
or recycling plants would be interested in helping test the app and
the model. This will help with testing this with real life situations,
and learn about further enhancements that might be needed in the
model. Additionally, the process, model and device integration will
be documented to an open-source format so others can improve
upon this work. By doing so, we hope to contribute meaningfully
to the environmental sustainability efforts, and potentially provide
an affordable and accessible solution for handling plastic waste.
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Abstract

Systemic risk in financial systems is frequently thought to rise
largely from market volatility, but the structural complexity of
inter-institutional relationships plays a key role in it. However,
traditional models often rely on stochastic processes or empirical
data, but sometimes can’t capture deterministic vulnerabilities em-
bedded within a network’s architecture. This paper introduces a
symbolic framework for identifying structural risk in financial net-
works using graph based constraint solving. In this, institutions are
modelled as nodes in a directed, weighted graph where edges repre-
sent financial dependencies—which include obligations, exposures,
or liquidity lines. Constraints symbolically encode capital thresh-
olds, solvency conditions, and counterparty relationships. With a
constraint based satisfaction engine, hypothetical scenarios of node
failure to detect deterministic propagation paths can be explored,
which reveals hidden system vulnerabilities. Validation with syn-
thetic networks is proposed with preliminary analysis indicating
how symbolic reasoning can expose non-obvious critical nodes and
substructures. This approach provides a transparent, reproducible,
and data-agnostic method for systemic risk assessment, suitable for
exploratory modeling and early warning system design.
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1 Introduction

The 2008 financial crisis and subsequent market shocks exposed the
fragility of global financial systems—not just due to bad assets, but
because of opaque, interconnected structures that amplified small
failures into systemic collapses. Predictive models have advanced
using machine learning and stochastic simulations, but the problem
is that they often rely heavily on historic data and make probabilistic
inferences which can be difficult to interpret or verify. Meanwhile,
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symbolic methods offer deterministic, logic based approaches for
reasoning about systems.

This paper proposes using symbolic constraint solving over
graph based representations of financial systems to detect structural
risk: the latent potential for cascading failures encoded in the net-
work’s topology and interdependencies. My approach emphasizes
transparency and interpretability, which will enable regulators and
analysts to simulate failure chains without requiring large scale
financial datasets or black box modeling techniques.

2 Related Work

Many recent papers on systemic risk rely on simulations, stress
testing, and agent based modeling [1, 3]. While useful, these meth-
ods depend on parameter tuning and probabilistic inference which
can obscure causal mechanisms. Work in computational finance
has explored graph models to study contagion effects [2], but few
approaches incorporate symbolic reasoning into these frameworks.
Constraint solving and symbolic computation have been suc-
cessful in software verification, combinatorial optimization, and Al
planning, though they are heavily underutilized in financial systems
modeling where they could be instrumental. My contribution lies in
bridging this gap by applying symbolic techniques from computer
science to gain deeper structural insights into financial stability
using a purely logical framework to simulate systemic dynamics.

3 System

A financial system is modeled as directed graph G = (V, E) where
nodes V represent financial entities (like banks, funds, etc..), and
edges E denote dependencies (such as loans, derivative exposure,
or liquidity provisions). Each node has a set of symbolic constraints
Ci representing conditions like minimum capital buffers, liquidity
thresholds, and exposure limits.

The system supports a failure cascade mechanism. If anode v €V
fails due to constraint violation (ex: liquidity falls below threshold),
all its outgoing obligations are marked as “at risk,” potentially caus-
ing its neighbors to re-evaluate their own constraints. A constraint
solver iteratively applies these rules, identifying propagation paths
and failure chains.

Unlike probabilistic models, this approach explores the complete
logical space of failure propagation under defined constraints with
a deterministic solver used to ensure repeatable, transparent simula-
tions. Constraint templates are customizable, allowing the model to
be adapted to various regulatory regimes or stress testing scenarios.

4 Evaluation

I evaluated my approach using synthetically generated financial
networks, ranging from sparse to highly connected structures, with
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randomized but plausible obligations and constraint values. My
symbolic solver identifies nodes whose failure results in maximal
downstream impact-the “critical nodes.” I compared these results
against centrality based metrics (ex: betweenness, eigenvector cen-
trality) and show that symbolic methods reveal vulnerabilities that
purely topological metrics miss.

One illustrative result: in a network of 50 nodes, the removal of
a single low-degree node led to a cascade affecting over 60 percent
of the network-a failure path undetected by standard heuristics.
This suggests my model can detect “hidden fragility” (structural
weaknesses that arise from tight constraint dependencies rather
than obvious hubs).

Where this model truly proves its value is in scenario testing:
regulators could stress-test a capital injection for Bank X, or sim-
ulate how tightening liquidity rules might ripple through the net-
work—all with near-instant recalculation.

5 Conclusions

In this paper, a novel symbolic method for detecting structural risk
in financial networks by combining graph theory with constraint
solving was presented. This approach differs from traditional risk
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models by avoiding probabilistic assumptions, and instead offering
deterministic insights into failure cascades.

My preliminary findings show that symbolic reasoning can un-
cover risk patterns hidden from topological analysis or machine
learning black-boxes. In future work, I plan on scaling the solver to
large scale financial systems, integrate temporal constraints, and
hopefully collaborate with economists to calibrate my models with
real world case studies.

Symbolic computation, long used in formal verification and the-
orem proving, has untapped potential in the domain of financial
systemic risk. This work offers a foundation for the exploration of
that.
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Abstract

Recent advances in machine learning (ML) have opened new fron-
tiers for modeling complex thermodynamic systems. Traditional
thermodynamic property predictions often rely on methods limited
in accuracy or scope. This research explores the potential of ML
methods—specifically support vector regression (SVR) and physics-
informed neural networks (PINNs)—to improve predictive accuracy
for thermodynamic properties. We propose a hybrid framework
combining these supervised learning algorithms with classical ther-
modynamic modeling concepts. Accompanying Python code exam-
ples using scikit-learn and TensorFlow demonstrate model training,
cross-validation, and the application of basic physics-informed
constraints using synthetic datasets. Execution of these examples
shows that SVR can achieve high accuracy (R?> ~ 0.96, MAE ~
0.15, RMSE = 0.23) on synthetic entropy data, a physics-informed
neural network with non-negativity constraints (not a PDE PINN)
attains R> ~ 0.78 (MAE ~ 0.52, RMSE =~ 0.88) for heat capacity
prediction, and a hybrid model with learned Shomate-like correc-
tion substantially improves performance to R? ~ 0.88 (MAE ~ 0.43,
RMSE = 0.65), all on synthetic data. While the provided code fo-
cuses on property prediction, the broader conceptual framework
discussed herein extends to potential digital twin integration and
reinforcement learning for operational optimization in complex
energy systems, representing avenues for future development.
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1 Introduction

The accurate prediction of thermodynamic properties is crucial
for the design, optimization, and operation of many chemical and
energy systems. Conventional methods, such as Benson’s group
additivity or quantum chemistry-derived equations of state, can be
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computationally expensive or may require vast amounts of empiri-
cal data, while assumptions inherent to these methods often limit
their applicability over extended conditions. In contrast, the integra-
tion of machine learning with thermodynamics has emerged as a
promising avenue to overcome these limitations by leveraging data-
driven models trained on extensive experimental and simulated
datasets.

A growing body of research has demonstrated the success of
machine learning models, such as support vector regression (SVR)
and random forest regression (RFR), in predicting properties like
entropy and heat capacity for a variety of hydrocarbons [1]. More-
over, matrix completion techniques that predict pair interaction
energies from sparse datasets have made it possible to general-
ize thermodynamic models even to mixtures that have not been
directly characterized. In parallel, research on thermodynamic ma-
chine learning from a fundamental perspective has revealed in-
triguing links between maximum work production and maximum
likelihood estimation [2], suggesting that physical learning agents
can be designed using statistical inference methods.

At the same time, operational optimization in energy systems,
such as geothermal power plants, has benefited from hybrid model-
ing frameworks that combine physical models with machine learn-
ing approaches. For example, the GOOML framework integrates
digital twins with machine learning to simulate and optimize real-
world geothermal systems [6]. Additionally, reinforcement learning
approaches have proven effective for controlling thermodynamic
processes in dynamic, transient conditions, such as for organic
Rankine cycles [7].

This research investigates a unified, physics-informed machine
learning framework aimed at improving thermodynamic property
prediction accuracy. Our approach synthesizes theoretical ther-
modynamic models with advanced ML techniques (SVR, PINNs).
We provide robust programming implementations in Python (us-
ing scikit-learn and TensorFlow) as illustrative examples to ensure
reproducibility and demonstrate the core concepts on synthetic
data. While the broader framework envisions enabling real-time
operational optimization through digital twin implementation, the
work presented here focuses primarily on the development and
validation of the property prediction models.

2 Literature Review
2.1

Traditional approaches for predicting thermodynamic properties,
such as entropy and heat capacity, have been enhanced using ma-
chine learning. For example, Aldosari et al. developed models based
on SVR that utilized molecular descriptors generated by alvaDesc

Machine Learning for Property Prediction
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to predict properties for hydrocarbon systems, demonstrating com-
petitive performance to traditional group additivity schemes [1].
Sensitivity analysis in that work revealed that a subset of highly
influential descriptors could be used to achieve reasonable accu-
racy while greatly reducing computational effort. Similarly, recent
work in deep learning has shown promise in building reduced-
order models that respect physical laws, where autoencoders and
structure-preserving neural networks capture the essential physics
of high-dimensional discretized systems [3, 4].

2.2 Hybrid Physics-Informed Models

The integration of machine learning with physical models has been
pursued through hybrid approaches. Recent studies have combined
matrix completion methods with the UNIQUAC model to predict
pair interaction energies for multicomponent mixtures, thereby
extending classical thermodynamic models to systems with sparse
experimental data. These hybrid approaches offer enhanced inter-
pretability and extrapolation capabilities by incorporating first-
principles information into data-driven models [5].

2.3 Thermodynamic Learning and Maximum
Work Production

Parallel to the application-focused research, there is an emerging
theoretical framework that connects thermodynamics with learn-
ing. Boyd, Crutchfield, and Gu have developed a perspective in
which machine learning algorithms are viewed as physical systems
that extract work from an environment by maximizing likelihood
functions, establishing a connection between energy efficiency and
predictive accuracy [2]. This perspective suggests that designing
learning systems that are directly optimized for maximum work
production may lead to inherently more efficient and robust models.

2.4 Digital Twins and Operational Optimization

On the applications side, digital twin frameworks have been imple-
mented to simulate and optimize complex thermodynamic systems
such as geothermal power plants. The GOOML framework, for in-
stance, integrates machine learning with detailed component-based
system modeling to predict system performance and optimize oper-
ational parameters in real time [6]. Such frameworks are essential
for operational environments where the system must adapt to sen-
sor drift, data gaps, and other practical challenges [8].

2.5 Machine Learning for Control Applications

Finally, reinforcement learning (RL) approaches have been success-
fully applied to control transient thermodynamic processes, such
as organic Rankine cycle operations. Deep Reinforcement Learn-
ing (DRL) methods have demonstrated significant improvements
over classical PID controllers in managing non-linear and transient
dynamics [7]. These control methods further validate the poten-
tial of integrating ML with thermodynamic modeling for real-time
operational management.
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3 Methodology

Our research methodology focuses on the development and demon-
stration of physics-informed machine learning models for thermo-
dynamic property prediction. While the broader vision includes
digital twin integration and RL control, the core methodology de-
tailed and implemented here centers on:

3.1 Data Curation and Feature Engineering
(Conceptual)

For real-world applications, a comprehensive dataset combining
experimental thermodynamic property measurements with com-
putationally derived molecular descriptors would be assembled.
Proven methodologies for descriptor generation (e.g., using tools
like alvaDesc as cited in [1]) would yield features capturing molecu-
lar structure. Feature selection techniques (e.g., mutual information
regression, sensitivity analysis) would identify critical descriptors.
(Note: The provided code examples utilize synthetic data for demon-
stration purposes.)

3.2 Model Development (Implemented in Code

Examples)

The primary focus is developing predictive models for thermody-
namic property estimation using supervised learning:

3.2.1 Support Vector Regression (SVR). We implement SVR using
a scikit-learn Pipeline that ensures proper preprocessing and fea-
ture selection. The pipeline consists of: StandardScaler — Selec-
tKBest(mutual_info_regression, k=10) — SVR(RBF kernel). Key
hyperparameters are set as C=50, £¢=0.1, y="scale’, based on the
synthetic data characteristics.

3.2.2  Physics-Informed Neural Network (non-negativity constraint).
We implement deep neural networks using TensorFlow/Keras with
a custom physics-informed loss function. The architecture includes
input layer, two hidden layers (64 and 32 units with ReLU activation,
batch normalization, and dropout=0.2), and output layer. The key
innovation is the custom combined loss function:

1 N 1 N
L(.y) = 5 (i =30 + A > max(0, 1) (1)
i=1 i=1

where the first term is the standard MSE and the second term
penalizes negative heat capacity predictions with A=0.1.

This differs from PDE-based PINNs (Raissi et al., 2019); here,
physics knowledge is incorporated only as a non-negativity con-
straint. The model processes features in scaled space but applies
the physics penalty in unscaled Cp space, with final clamping:
7 « max(7,0).

3.2.3 Hybrid Models. The hybrid model combines the ML pre-
diction with a learned classical correction term. Unlike previous
approaches using fixed coefficients, our implementation learns the
correction parameters via least squares on training residuals:

Ghybria(x) = gmL(x) + ©(T)0 ()

where ®(T) = [1,T,T?,1/T] is the Shomate-like basis and 6 is
estimated by:
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0" = arg méi’n lytrain — GmL Xtrain) — ®(Tirain)Oll2 (3

This Shomate-like residual correction allows the classical ther-
modynamic form to capture systematic residuals that the neural
network cannot model effectively.

3.3 Digital Twin Integration (Conceptual /
Future Work)

(This section describes the conceptual framework, not implemented
in the provided code.) To bridge simulation and real-world applica-
tion, a digital twin of an operational thermodynamic system (e.g.,
geothermal power plant) could be developed. This would involve:

(1) Data Ingestion Pipeline

(2) Data Quality Module

(3) State Estimation Engine (using the developed SVR/PINN/Hy-
brid models)

(4) Simulation Core

(5) Optimization Module

(6) Visualization Interface

This framework would ideally leverage online learning for con-
tinuous adaptation.

3.4 Reinforcement Learning Control
(Conceptual / Future Work)

(1) Environment Modeling (based on hybrid models)
(2) State Space Definition

(3) Action Space Definition

(4) Reward Function Design

(5) Agent Architecture (e.g., DQN, PPO, SAC)

(6) Training Procedure

Constrained policy optimization and safe exploration strategies
would be critical.

4 Implementation and Results

All results in this paper were generated by a single reproducible
script (thermo_models_reproducible.py) with command-
line flags. The results presented here reflect the performance on
synthetic datasets and serve to validate the implementation of the
core methodologies. Performance on real-world datasets would
require separate evaluation with appropriate molecular descriptors.

4.1 Synthetic Dataset Generation

The synthetic dataset contains 1200 samples with 20 features, in-
cluding temperature T as the first feature. The entropy target allows
negative values and follows a smooth nonlinear function. The heat
capacity target is constrained to be non-negative and includes a
challenging inverse-square temperature dependence that tests the
models’ ability to capture complex thermodynamic relationships.

4.2 SVR Implementation for Entropy Prediction

The SVR implementation achieved excellent performance on the
synthetic entropy prediction task. The scikit-learn Pipeline ensures
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proper scaling and feature selection, identifying the 10 most infor-
mative features via mutual information regression. Performance
metrics on the test set:

e Mean Absolute Error (MAE): =~ 0.154
e Root Mean Squared Error (RMSE): ~ 0.230
e R% Score: ~ 0.957

This strong performance demonstrates the effectiveness of the
SVR approach for smooth, well-behaved thermodynamic properties.

4.3 PINN Implementation for Heat Capacity
Prediction

The PINN implementation successfully incorporates physics-based
constraints through the custom loss function. The model was trained
with early stopping and learning rate reduction callbacks, process-
ing scaled features while applying physics penalties in unscaled
space.

Performance metrics on the test set:

e MAE: = 0.519
e RMSE: ~ 0.884
e R? Score: ~ 0.776

While the PINN shows reasonable accuracy, the challenging
inverse-square temperature dependence and noise in the synthetic
data limit baseline performance, motivating the hybrid approach.

4.4 Hybrid Model Implementation

The hybrid model learns a Shomate-like correction term on the
residuals between the PINN predictions and true values. The cor-
rection parameters ¢ are estimated via least squares using the
temperature-dependent basis functions.

Performance metrics on the test set:

o MAE: = 0.427
e RMSE: ~ 0.645
e R? Score: ~ 0.881

The hybrid model shows substantial improvement over the base-
line PINN, with MAE reduced by about 18% and R? increased
from 0.776 to 0.881. This demonstrates the benefit of incorporating
learned classical corrections.

Table 1: Performance Metrics on Synthetic Datasets (Gener-
ated by Reproducible Script)

Model Type (Target Property) MAE RMSE R’ Score

SVR (Entropy) 0.154  0.230 0.957
PINN (Heat Capacity) 0.519  0.884 0.776
Hybrid (Heat Capacity) 0.427  0.645 0.881

5 Discussion
5.1

The experimental results demonstrate the effectiveness of the pro-
posed hybrid physics-informed machine learning frameworks. The
SVR model achieved exceptional performance (R* ~ 0.957) on

Model Performance Analysis
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SVR: Predicted vs Actual (Entropy)

Predicted entropy (SVR)
o

Actual entropy

Figure 1: SVR (Entropy) - Predicted vs Actual scatter plot
showing excellent correlation with R? ~ 0.957

Hybrid: Predicted vs Actual (Cp)

18

Predicted Cp (Hybrid)

14

14 16 18 20 22
Actual Cp

Figure 2: PINN / NN (Heat Capacity) - Predicted vs Actual
showing physics-informed constraint enforcement with R? ~
0.776

PINN: Predicted vs Actual (Cp)

Predicted Cp (NN base)
=
)

14

14 16 18 20 22
Actual Cp

Figure 3: Hybrid (Heat Capacity) - Improved performance
through learned classical correction with R? ~ 0.881

synthetic entropy prediction, confirming its capability for captur-
ing smooth thermodynamic relationships. The PINN implementa-
tion successfully incorporated physics-based constraints, achieving
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R? ~ 0.776 for heat capacity prediction while ensuring physical
feasibility through the non-negativity penalty.

Most significantly, the hybrid model demonstrates substantial
improvement over the baseline PINN (R? = 0.881 vs. 0.776), val-
idating the approach of combining learned ML predictions with
classical thermodynamic correction terms. The 18% reduction in
MAE and the improved R? score show that the Shomate-like cor-
rection effectively captures systematic patterns that the neural
network struggles to model, particularly the challenging inverse-
square temperature dependence.

5.2 Methodological Contributions

The unified implementation provides several methodological ad-
vances:

(1) Proper ML Pipeline: The SVR implementation uses a com-
plete scikit-learn Pipeline ensuring reproducible preprocess-
ing and feature selection.

(2) Physics-Informed Loss: The PINN applies physics penal-
ties in physically meaningful (unscaled) space rather than
scaled feature space, improving constraint enforcement.

(3) Learned Hybrid Correction: Unlike approaches with fixed
coefficients, the hybrid model learns correction parameters
via least squares on residuals, enabling adaptive integration
of classical and ML components.

(4) Fallback Robustness: The implementation gracefully falls
back to MLPRegressor when TensorFlow is unavailable, en-
suring broad compatibility.

5.3 Scope and Limitations

While the results validate the core methodologies, several limita-
tions should be noted:

(1) Synthetic Data: Results are on synthetic datasets designed
to test specific model capabilities. Real-world performance
will depend on data quality, molecular descriptors, and ex-
perimental noise.

Simple Physics Constraints: The current PINN imple-
ments only non-negativity constraints. More sophisticated
thermodynamic constraints (e.g., phase equilibria, cross-property
integrals) could further improve performance.

Limited Hybrid Correction: The Shomate-like basis, while
physically motivated, may not capture all relevant classical
relationships for diverse thermodynamic systems.

—
S
~

—
&Y
=

6 Conclusion and Future Work

This research demonstrates the successful implementation and val-
idation of hybrid physics-informed machine learning frameworks
for thermodynamic property prediction. The unified reproducible
implementation achieved strong performance: SVR (R? ~ 0.957) for
entropy prediction, PINN (R? ~ 0.776) with physics constraints for
heat capacity, and hybrid correction (R? ~ 0.881) showing substan-
tial improvement through learned classical corrections.
Key validated contributions include:

(1) A complete, reproducible SVR pipeline with proper prepro-
cessing and feature selection
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(2) A PINN implementation with physics-informed loss applied
in meaningful physical space

(3) A hybrid approach learning classical corrections via least
squares on residuals

(4) Demonstration that hybrid models can substantially outper-
form pure ML approaches

Future work will extend these methodologies to real-world exper-
imental datasets, incorporate comprehensive molecular descriptors,
and develop more sophisticated physics-informed constraints that
enforce thermodynamic consistency across multiple properties. Ad-
ditional directions include digital twin integration for operational
optimization and reinforcement learning for adaptive control. Real-
world validation will also require uncertainty quantification, extrap-
olation safeguards, and phase-aware modeling to ensure reliable
deployment.
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A Reproducible Implementation

All results in this paper were generated by a single unified Python
script:

Listing 1: Usage example for reproducible implementation

python thermo_models_reproducible.py —--n-samples
1200 --out ./thermo_demo

This generates the results table and plots shown in the paper,
ensuring full reproducibility of all experimental findings.
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Abstract

As space travel becomes increasingly complex and sought after with
the prospects brought about by international and national space
missions such as NASA’s Artemis II and Europa missions, monitor-
ing battery safety and health in spacecraft has become even more
critical. Under space conditions and stresses, electrical systems and
components such as batteries face exposure to high energy parti-
cle radiation, thermal fluctuations, and operational autonomy in
remote environments. The industry standard for satellite, probe,
and rover batteries has been favorable in regards to Lithium-ion
batteries (LiBs), which, despite their high energy density, long life
cycle, and wide operating temperature range, are still vulnerable to
solid electrolyte interphase (SEI) degradation, capacity fade, thermal
runaway, and impedance shifts caused by these harsh conditions,
significantly impacting mission success. Current spacecraft battery
monitoring methods rely heavily on human oversight and teleme-
try data, resulting in delays or inaccuracies. This study aims to
address this limitation by employing machine learning (ML) meth-
ods, such as linear (LR) and random forest (RF) regression. Utilizing
the nascent PyBaMM library to artificially synthesize LiB radiation
and thermal data, the ML model will be trained on labeled data
to improve anomaly detection accuracy and reduce false positives
in battery systems monitoring, offering future potential for real-
time autonomous responses to battery health deterioration in space
without human intervention.

Keywords

PyBaMM, Code Generation, Battery Degradation Study, LEO Space-
craft, Machine Learning Analysis

ACM Reference Format:

Vera A. van der Linden. 2025. Spacecraft Anomaly Detection: Machine
Learning Based Detection of Lithium-Ion Battery Degradation in Space
Conditions. In Proceedings of International Journal of Secondary Computing
and Applications Research (IJISCAR VOL. 2, ISSUE 2). ACM, New York, NY,
USA, 7 pages. https://doi.org/10.5281/zenodo.17107814

1 Introduction

The advent of Lithium-ion batteries (LiBs) has markedly increased
the applicability and widespread use of batteries, from technologies
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such as electric vehicles to microelectronics. These batteries are
frequently used as energy sources across modern applications due
to their high energy density, high cell efficiency, and wide range
of chemical potentials [1]. In addition, Lithium-ion batteries are
favored for space applications due to their compactness and light-
weight nature, offering up to a 50% weight reduction compared to
older technologies like Nickel-Hydrogen batteries [2]. These desir-
able electrochemical and material characteristics have earned this
battery high regard in space industries as well. Today, around 98
space agencies are preparing for missions with navigational, mili-
tary, and meteorological impacts, outside of the Earth in geosyn-
chronous equatorial orbit (GEO), low earth orbit (LEO), and on
other planets [2]. Many of these missions are dependent on the
performance and useful life of spacecraft energy sources, of which
LiBs and solar panels are some of the most common. Battery health
is a crucial parameter for the reliable operation of orbiting satellites,
probes, and rovers on other planets, yet accurately monitoring and
maintaining batteries in space has proven particularly challenging.
Typically, in space, batteries require shielding to mitigate the effects
of radiation and temperature extremes, but these techniques are
often costly and compete for the limited space aboard spacecraft. A
comprehensive statistical analysis of 1584 satellites from January
1990 to October 2008, revealed that battery failures contribute signif-
icantly to satellite malfunctions [3]. Specifically, battery failure ac-
counts for 4% of failures within the first 30 days, 10% by the 5th year,
and 14% by the 15th year of operation [3]. Over extended mission
durations, particularly between the fifth and fifteenth operational
years, as demonstrated, batteries and their subsequent cathode,
anode, separator, and electrolyte components are subjected to high
levels of ionizing space radiation. High-energy particle radiation
environments are indicated by gamma rays (y), X-rays, neutrons,
helium ions, and protons. These particles, expelled from cosmic
rays, solar flares, and hot plasmas, can significantly alter battery
materials through ionizing radiation processes such as Compton
Scattering, the Photoelectric Effect, and Pair Production [3]. Ra-
diation exposure has been shown to damage battery separators,
reduce pore numbers and increase pore sizes through structural
alterations, which contribute to overheating and pose safety con-
cerns if this phenomena develops into thermal runaway. Moreover,
lattice exchanges in the cathode between gamma-activated lithium
and transition metal ions, cause cation inversion defects and fur-
ther structural degradation. Transition metal ions released from
cathodes can also damage the solid electrolyte interphase (SEI),
which initially forms on the anode as a protective layer, further
deteriorating battery health [3].
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To address the gaps identified in current battery monitoring we
trained random forest (RF) models, with supervision, on data that
was artificially generated using the PyBaMM library for LiBs, simu-
lating real-time anomaly detection while significantly enhancing
spacecraft safety and autonomous vehicles [4]. By incorporating
unsupervised learning in future works, the model has potential
to detect rare or unexpected battery degradation, which would
register as an unlabeled phenomena, caused by the harsh space
environments alone. Real-time monitoring capabilities will enable
immediate detection of anomalies, reducing reliance on human-in-
the-loop operations, and serve as early indicators of degradation
in battery State of Power (SoP) and State of Function (SoF), which
are usually underrepresented in research with machine learning
(ML) [5]. Overall, this study aims to advance scientific understand-
ing of space battery behavior, introduce robust machine learning
methodologies for anomaly detection, and improve the reliability
and safety of autonomous spacecraft operating in extreme environ-
ments.

2 Related Work

Monitoring battery health via conventional methods, such as satel-
lite telemetry or manual human-in-the-loop interventions, present
limitations, including latent or inaccurate responses to rapid bat-
tery health changes and systems which are inaccessible during
long space missions. An effective Battery Management System
(BMS) is essential for ensuring the safe and reliable operation of
LiBs in aerospace and spacecraft [5-7]. Key functions of a BMS
include diagnosing battery state estimation, prognosis, and fault
detection [5-7]. The increased applications of LiBs to high-power
systems have solidified the importance of BMS functions due to
the narrow operating area of LiBs and the consequences of failure,
such as dangerous thermal runaway [7]. Additionally, limitations
exist within traditional methods of battery state estimation and
diagnosis, such as model based approaches which may not account
for aging effects under diverse cycling conditions [5]. The accu-
rate estimation of battery State of Health (SoH) and prediction
of Remaining Useful Life (RUL) are notable indicators of battery
degradation and vital for mission planning with efficient lifetime
management [5].

Data driven approaches, particularly utilizing Artificial Intelli-
gence (Al) and ML, have emerged as alternatives to traditional meth-
ods. ML techniques are advantageous because they can handle the
non-linear characteristics of LiBs without requiring detailed electro-
chemical models, treating the battery as a black box, while retaining
high accuracy and efficiency [5, 7]. Over the past decade, there has
been a significant increase in studies applying Al and ML to battery
state estimation, particularly focusing on SoC and SoH [5]. Shibl et
al. [4] proposed ML techniques such as Long Short-Term Memory
(LSTM) for predicting State of Charge (SoC), and RF algorithms
for estimating SoH, to increase predictive capabilities in BMSs for
unmanned aerial vehicles, while highlighting the importance of
SoC prediction throughout missions and SoH estimation before a
mission starts. Similarly, Raoofi and Yildiz [5] identified gaps in the
application of intelligent methods for evaluating battery SoF and
State of Power SoP, compared to the more commonly cited SoC and
SoH capacities, highlighting challenges such as data scarcity and
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computational complexity for ML in propulsion systems. Hashemi
et al. [6] also showcased a machine learning parameter estimator
using Support Vector Machines (SVM) and Gaussian Process Regres-
sion, demonstrating ML based fault diagnosis for conditions like
battery overcharge and under-discharge, despite a lack of consider-
ation regarding cell aging effects. In addition to state estimation,
ML and data driven methods are gaining traction in fault detection
and diagnosis in LiBs due to their accuracy and reduced depen-
dence on domain expertise [7]. Researchers have currently applied
ML to detect faults such as overcharge, over-discharge, internal
short circuits, and sensor faults, commonly using techniques such
as Artificial Neural Networks, RF classifiers, and SVM [7]. For SoH
estimation, common ML methods include RF, SVM, and DNN, often
treating estimation as a regression or classification problem [5, 7, 8].
RUL prediction, closely related to SoH and degradation, also uti-
lizes widely explored ML techniques such as DNN, LSTM, SVM,
and Relevance Vector Machine [5, 8]. Hybrid techniques combining
ML and physical models are also being developed [8].

Utilizing ML based methods for LiB degradation detection in
space conditions presents obstacles beyond the previously discussed
effects of ionizing radiation. Specifically, space environments in-
volve extreme temperature variations depending on the position of
the spacecraft housing the battery and the sun, which can impact
battery performance [3]. Also, the synergistic effects of radiation
and temperature on battery degradation should be considered [3].
A significant hurdle for BMSs that incorporate MLs for functions,
including state estimation and fault diagnosis, is the need for the
high volume and quality of battery data for training and valida-
tion [5, 7, 8]. Developing and training robust models requires data
from broad environmental conditions, with variable temperature,
noise, electromagnetic interference, and battery performance dete-
rioration [5]. Obtaining sufficient real-world data from manufactur-
ers and organizations, especially data from confidential, extreme
environments like space, or data that captures various degradation
stages and fault conditions, is usually difficult [5, 7, 8]. Similarly,
simulating real physical faults in a laboratory environment is typ-
ically risky and not cost effective [7]. Consequently, researchers
frequently rely on data collected from experimental tests, simula-
tions, or prototype systems to address this data scarcity, warranting
the development of high fidelity fault simulations and public data
sets [5, 7]. These challenges, in tandem with the harmful effects of
ionizing radiation, temperature extremes, cycle life, vacuum con-
ditions, operation profiles, and mission type and duration, pose
significant obstacles to the implementation of current battery tech-
nologies to future missions. Challenges related to data manage-
ment, computational complexity, preventing bias, and ensuring
dataset completeness for ML training and verification are also rec-
ognized [5].

Most of the reviewed ML applications for battery state estima-
tion and fault diagnosis, such as DNN, LSTM, RF, and SVM, are
inherently supervised learning approaches [5, 8]. These networks
require labeled data, meaning the training data must include known
output values, such as accurate SoH percentages, classified fault
types, or precisely measured parameters under controlled condi-
tions [5, 7, 8]. The lack of data scarcity is amplified when requiring
labeled data, particularly for rare and complex degradation patterns
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or conditions encountered in space [7]. Therefore, the use of ar-
tificially generated data becomes particularly relevant, providing
the necessary volume of data and the required labels for training
supervised ML models to detect LiB degradation and faults under
space conditions. While the literature primarily discusses super-
vised applications utilizing simulated or experimental data [5, 7],
the potential application of unsupervised learning for anomaly
detection in the absence of labeled fault data also exists.

3 Methods

The methodology employed in this study addresses limitations in
conventional spacecraft battery monitoring, specifically aiming to
enhance anomaly detection accuracy and facilitate future work on
autonomous responses to battery degradation under extreme space
conditions. This was achieved through a novel approach utilizing
artificially simulated data and supervised learning with ML models,
such as random forest (RF) and linear regression (LR). The full
simulation and machine learning algorithms are available in detail
in the GitHub [9].

3.1 Data and Data Set Processing

To overcome the challenges brought about by the scarcity of battery
data representative of space environments, this study employed
the physics based Doyle—Fuller-Newman (DFN) electrochemical
model via the open-source PyBaMM library, version 25.6.0. The DFN
model was specifically chosen for its ability to accurately represent
complex internal electrochemical behaviors within LiBs, including
lithium-ion transport and degradation phenomena. The PyBaMM
software package is designed as a multi-physics battery modeling
environment that is extendable and modular, allowing for the sim-
ple implementation and rigorous testing of numerical methods. The
model implemented in this study builds upon the O’Kane et al. [10]
parameter set. Further, the O’Kane et al. model [10] directly couples
more than two degradation mechanisms in the negative electrode,
a significant advancement over previous models that often isolated
these mechanisms or considered these mechanisms through indi-
rect interactions [10]. The submodels simulated within this frame-
work include reaction limited SEI growth, reversible lithium plating,
particle swelling and cracking, and distributed SEI film resistance.
These mechanisms reflect realistic aging and stressors due to bat-
tery cycling. For instance, it models the interaction between lithium
plating and SEI by allowing plated lithium to decay into inactive
"dead lithium" over time, with the rate influenced by SEI thickness.
While the O’Kane et al. model [10], which considers 4.85 Ah rated
LG M50 batteries, provides a general framework, it can be extended
and updated within PyBaMM to allow for the customization of spe-
cific mission parameters and environmental conditions [10]. This
customization provides ground work for unique battery specifica-
tions such as those encountered in programs like the Mars Surveyor
Mission, which relied on higher capacity LiBs for long missions
aboard spacecraft and required performance at low temperatures.

Battery cells were simulated in correspondence with specifica-
tions from Yardney Technical Products, who fabricated the original
batteries for spaceflight, and the LEO procedure identified by Reid
et al. [11]. The 28 V, 25 Ah Mars Surveyor Program LiBs are com-
posed of eight cells connected in series, a mesocarbon microbeads
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1 k_LP = 0.01 # Lithium plating coefficient
2 T_plating = 283
3 if temp < T_plating:
4 plating_modifier =
5 else:

plating_modifier = 0

k_LP * (T_plating - temp)

s k_T = .01 # Temperature coefficient
) temp_delta = temp - 298 # Difference from STP reference
10 temperature_modifier = k_T * temp_delta # 1 K increase
above 298 K increases degradation by 1% and vice
versa
» k_.R = 1.0e-3 # Radiation coefficient

135 radiation_modifier =

23

k_R * cumulative_radiation_dose_Gy
# 1 Gy increases degradation by 0.2%

modifier_total = 1 + temperature_modifier +
radiation_modifier + plating_modifier

6 # A multiplier that is the sum of modifiers that

represent deviations from ground state operation at

@ Gy and 298 K

Figure 1: Temperature, lithium plating, and radiation modi-
fiers with coefficients.

anode, a lithium nickel cobalt oxide (LiNiCoO2) cathode, and a
liquid organic electrolyte [11]. The experiment specified within
the simulation code references a realistic spacecraft operational
profile for one cell based on a 90-minute LEO orbit, or one battery
cycle out of 16 orbits per day, comprising 55 minutes of charg-
ing at 12.5 A (C/2) to a maximum voltage of 4.05 V, followed by a
constant-voltage hold, and a 35 minute discharge at 17.5 A (0.7C)
to a minimum voltage of 2.5 V. This procedure closely matches
NASA’s Mars Surveyor battery qualification protocols, ensuring
relevance to practical spacecraft operation scenarios. Batteries for
Mars missions, such as the Mars Exploration Rover, operate at
approximately 28 V with a discharge rate between C/5-1C, and re-
quire specific performance characteristics over a broad temperature
range [2]. Our simulation also explicitly accounted for crucial envi-
ronmental stressors in LEO: radiation dose accumulation, lithium
plating, and thermal variations, which are represented as modifiers
shown in Fig. 1. Within the simulation, the value of cumulative
radiation dose was determined from literature, where accumulation
increases up to 5-19 Gy over 1,100 days, or an average of 7x10-
4 Gy per cycle, representing realistic radiation exposure in LEO
environments [3, 12].

To account for the influence of temperature on LiB degradation,
particularly in the context of lithium plating at low temperatures
and accelerated chemical aging at higher temperatures, three em-
pirical modifiers were implemented (Fig. 1). First, a linear tempera-
ture modifier was implemented to reflect the increased chemical
degradation rates at temperatures above the standard reference
temperature of 298 K (25°C), with moderate degradation rates of 1%
per kelvin deviation from this reference (k_T = 0.01) [13]. Second, a
plating modifier was introduced below 283 K (10°C), due to slowed
intercalation at temperatures below 298 K, a known threshold for
lithium plating in LiB cells. Below this threshold, the degradation
was linearly increased by an additional 1% per kelvin (k_LP = 0.01),
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the reciprocal of temperature [14]. These modifiers allow for a real-
istic representation of degradation mechanisms at both ends of the
temperature spectrum, which can lead to a loss of capacity and an
increase in cell impedance [3].

le-14 * np.exp(@.325 * (temp - 298))
sei_rate_mod = base_sei_rate * modifier_total

Figure 2: Baseline and battery degradation modified SEI
growth rate with Arrhenius dependence.

Lastly, the code in Fig. 2 defines the base SEI growth rate and
that as a function of the total modifier, with radiation derived from
the multiplication of cumulative radiation dose and a coefficient [3].
The baseline SEI growth model (Fig. 2) was calculated without
external stresses using a simplified exponential Arrhenius tempera-
ture dependence formula with a hypothesized activation energy, or
Ea, of 24 kJ/mol. The simplified formula substitutes for a scaling
pre-factor and a coefficient denominator that simulates the effect
of absolute temperature in Kelvin, T, in the original Arrhenius
relationship, but not the gas constant, R, in Eq. 1.

Eq

k =Aexp ( ﬁ) (1)
Overall, synthetic data was produced across 20 temperature steps
ranging from 273 K (0°C) to 313 K (40°C). This range covers typical
spacecraft temperature fluctuations, as batteries in LEO satellites
can experience wide temperature variations from -9°C to +43°C [15].
The dataset incorporated numerous battery health indicators, in-
cluding discharge capacity, SEI thickness, resistance, local ECM
resistance, electrode particle crack lengths, internal resistance, SoH,
SoP, Loss of Lithium Inventory (LLI), SEI growth, degradation sever-
ity, estimated RUL, and deviation from RUL. The following values
were also calculated with radiation, lithium plating, and thermal
degradation stressors as previously described, capacity fade, SOH,
LLL SEI growth, and estimated RUL. The reference discharge capac-
ity, (Qref), Which is temperature dependent, was calculated using

the linear approximation in Eq. 2.

Oref(T) = m(T — 296) + 10 2)
Where m is an empirically determined coefficient representing
the rate of capacity change in amp hours per unit Kelvin, and T is
the absolute temperature in Kelvin. For 16 cycles, m was observed to
be approximately 0.0815 Ah/K or for once cycle, 0.0373 Ah/K, these
values yield an initial capacity fade of zero. At the baseline reference
temperature of 296 K (23°C), Q. equals 10 Ah with respect to the
defined DoD, with capacity linearly increasing or decreasing around
this reference as temperature rises or falls. Capacity fade was then
determined by comparing measured discharge capacity (Q) against
the calculated reference capacity (Qyef) as in Eq. 3.

Capacity Fade (%) = (%) X 100

ref

©)

The SOP indicates the capability of a battery to deliver power
considering internal resistance, and was calculated from terminal
voltage measurements and internal resistance (R) values, (Eq. 4).
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Vterminal

SOP =
4R

4)

This formulation assumes maximum power transfer conditions
and provides an estimation of operational performance under vary-
ing temperatures and internal resistance conditions encountered
during cycling.

3.2 Model Selection and Implementation

To achieve robust, real-time anomaly detection and enhance space-
craft battery reliability, this study utilized ML methods, specifically
RF regression algorithms and LR. These algorithms were selected
due to their proven efficacy in capturing non-linear degradation
patterns inherent in LiBs without needing detailed underlying elec-
trochemical equations at runtime. They effectively learn and predict
battery degradation and anomaly patterns from complex synthe-
sized data sets, including ones that contain degradation patterns,
contributing significantly to a proactive BMS. RF models are most
advantageous for this application due to their robust nature and
ability to comprehend datasets with many features. In practice, RFs
construct multiple decision trees during training and output the
mean prediction or the most frequent class for classification, making
it less prone to overfitting compared to single decision trees [4, 7, 8].
Furthermore, RFs demonstrate potential for direct correlation of
model conclusions with specific electrochemical degradation mech-
anisms, providing an understanding of degradation severity [4]. LR
was employed primarily as a baseline model and for identifying
simpler, more direct relationships within the battery data. While
less suited for capturing the non-linear patterns compared to RF,
it offers computational efficiency, the ability to extrapolate values,
and high interpretability for linear trends [5, 8].

In regards to the LR model, the data was split specifically to evalu-
ate extrapolation performance. All available data points, consisting
of measured discharge capacities across various temperatures, were
first concatenated. The dataset was then split deterministically, iso-
lating the last 10 temperature and discharge data points for testing
(293-313 K), while the first 10 were used for training (273-293 K).
This approach specifically evaluates the model’s predictive ability
beyond the temperature range seen during training and prevents
temporal data leakage. The non-linear RF model utilized data split
randomly to assess overall predictive accuracy and robustness. The
combined dataset of 20 data points total, was randomly shuffled and
then split using a standard 75% training and 25% testing scheme
with a fixed random seed at zero to ensure reproducibility. This
randomization helps reliably estimate model performance metrics,
such as MSE and R? across the entire temperature range. While this
random split reliably estimates overall predictive accuracy, if the
temperature steps are interpreted as a strict temporal sequence of
degradation, a random split may introduce a form of data leakage.
However, the primary goal of using an RF model was to assess
its ability to capture non-linear degradation patterns, rather than
temporal extrapolation, which was the focus of the LR model’s
evaluation.
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3.3 Training Strategy for Anomaly Detection

Battery health and anomaly detection were implemented by calcu-
lating the fade per cycle and estimated RUL until 20% capacity fade,
end of life range, under baseline and modified conditions, account-
ing for temperature and radiation effects [8]. The percent deviation
between modified and baseline RUL estimates determined the bat-
tery health flag (green, amber, or red), indicating normal, moderate,
or severe degradation, respectively. Approaching anomaly detection
through supervised learning strategies, the models are trained on
datasets containing labeled instances of normal battery operation
and known results affected by radiation and thermal degradation.
The goal was to map input features, battery operational parameters
and degradation indicators, to corresponding output labels, anom-
aly status or degradation level, allowing the system to predict these
states for new, unseen data. This supervised approach is often de-
ployed in battery SOH and RUL estimation due to its effectiveness
in predicting specific target variables [4, 7, 8]. However, the models
implemented were most sensitive to gradual, cumulative changes
indicative of degradation rather, such as RUL, than discrete events
like sensor spikes or missing values. While the primary approach
is supervised, the potential for incorporating unsupervised learn-
ing methods in future work is recognized. Unsupervised learning
techniques could be valuable for identifying novel or previously un-
characterized anomalies without requiring pre-labeled fault data [7].
Given the challenge of data scarcity, especially for specific fault con-
ditions in real-world scenarios, unsupervised methods, employed in
future work, could complement the supervised models by detecting
deviations from expected patterns or clusters of data points that
indicate degradation in unpredictable space environments.

4 Results

4.1 Simulation Plots and Behavior

The simulated battery discharge capacity showed a consistent linear
increase from 9.14 Ah at 273 K to 9.29 Ah at 293 K for one cycle, and
adecrease from 8.13 Ah to 7.85 Ah over the same temperature range
for 16 cycles. Additionally, the trend in LLI increased non-linearly
for the same number of cycles and range of temperatures (Fig. 3). SEI
thickness increased slightly across the temperature range, reflecting
increased reaction kinetics at higher temperatures, while lithium
plating thickness only affected modified data under 298 K under
the tested operational profile. Capacity fade with thermal, lithium
plating, and radiation stresses increased from 0% at 273 K to 5.76%
at 293 K for a single cycle and 0% to 18.5% for the same temperature
increments over 16 cycles (Fig. 4b), the respective baseline capacity
fade data was up to 0.5% higher than the aforementioned data (Fig.
4a), since degradation is slowed at low temperatures. At higher
testing temperatures increasing from 293 K to 313 K over a single
cycle, the capacity fade with stresses increases from 5.76% to 13.57%,
whereas the baseline capacity fade only increases from 6.06% to
11.80%. These data trends highlight that the environmental stress
modifiers significantly influence the simulated battery degradation.

The simulation assumes an initial SOC of 0.1, or 10% charged
and 90% empty, to reflect the variability seen in the NASA reference
data, which does not consistently start at full charge. This low SOC
results in limited charging before the voltage cutoff is reached,
while the higher rate of discharge removes charge at a faster rate
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Figure 4: Capacity fade and State of Health (SOH) compar-
isons over 16 cycles as a function of percent over temperature
in kelvins. The base capacity fade (a) can be seen to increase
linearly alongside modified capacity fade (b), with radiation,
plating, and temperature modifiers. Conversely, the unmodi-
fied SOH (c) decreases linearly alongside the modified SOH
(d).

than was added. As discharge capacity is cumulative, this leads to
negative values with large magnitudes, which is evident in Fig. 5.
These negative capacities are a direct consequence of the initial
conditions, and are consistent with the defined experiment.

4.2 ML Model Predictions

LR and RF regression models trained on synthetic battery degrada-
tion data for one cycle revealed distinct performance characteristics.
For instance, LR yielded a high R® training score of 0.996 for 10
steps from 273-293 K, but failed to generalize effectively to testing
data for 293 K to 313 K with the same incrementation, exhibiting a
negative R* (-0.454). However, in the context of the simulation and
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Figure 5: LLI (a) and discharge capacity (b) are graphed over
a time index for a constant temperature, and one cycle for
simplification.

the electrochemical relationships shown, the negative testing R*
score suggests that a linear model is not an accurate fit to non-linear
data. Furthermore, the RF model also displayed strong training per-
formance (R*=0.992), but conversely demonstrates slightly lower
predictive accuracy on the unseen testing set (R*=0.970.), indicat-
ing some challenges in extrapolating beyond the original training
temperature range. Both models slightly underperformed when gen-
eralizing, reflecting potential limitations in capturing underlying
nonlinearities outside the initial training domain (Fig. 6).

Training Testing Training MSE | Testing MSE
Temperature Temperature
Values Values
Linear [273-293 K for | [293-313 K for [ 8.72e-6 1.24e-3
Regression 10 steps] 10 steps]
Model
Random Forest | [273-293K for | [293-313 K for 5 | 3.69e-5 1.98e-4
Regressor 15 steps] steps]

Figure 6: Training and testing results for predicting discharge
capacity as a function of temperature.

Discharge capacity was predicted by the LR model over tempera-
ture in kelvins for training (Fig. 7a) and testing (Fig. 7b) temperature
ranges. The ratio of training to testing data was split 50:50 for a
total of 20 intervals, a standard training and testing scheme.
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5 Discussion

(b) Predicted discharge capacity
values for testing temperature
set.

To ensure the physical plausibility and robustness of synthetic data,
simulated results were validated against published NASA Mars
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Surveyor battery performance data. Despite the simulation being
limited by its dependence on empirically selected coefficients and a
narrow range of simulated values, the simulation allows for flex-
ibility and is not strictly conformed to certain LiB specifications.
Adherence to realistic battery parameters and degradation trends
ensures that the simulated data realistically represents spacecraft
battery conditions, ensuring the generated datasets are applicable
for effective anomaly detection via trained machine learning mod-
els. The simulated results align qualitatively with known physical
phenomena, such as higher discharge capacities and accelerated
degradation rates at elevated temperatures. The pronounced rela-
tionships observed indicate that the simulated degradation factors
rely heavily on predefined modifiers, potentially oversimplifying
the complex stochastic behaviors of real battery degradation. This
likely contributed to reduced extrapolation capabilities of the ML
models against the testing temperature range. The LR model ef-
fectively captured the immediate linear temperature-capacity re-
lationship within the training set, reflected by its high training
accuracy. However, its linear estimations rendered it inadequate
for predicting degradation at conditions beyond the training limits,
as evidenced by the testing temperature range R® values. Similarly,
the RF model, despite being better suited to complex nonlinear in-
teractions, had a reduced capacity to predict accurate degradation
at higher, untrained temperature ranges. This suggests limitations
in training on deterministic and ranged synthetic datasets, high-
lighting the importance of broader data variations.

While this study utilized a supervised learning approach with
LR and RF for detecting labeled degradation, other anomaly de-
tection methods exist. For instance, One-Class Support Vector Ma-
chines could be explored in future work, as they are able to identify
anomalies in unsupervised settings by training on normal behav-
iors and flagging deviations from it, which is especially valuable
when labeled fault data is scarce. Also, Isolation Forest models are
adept at anomaly detection and isolation due to their proficiency
with calculating the distance to relevant data points or "anomaly
points” [16]. Though these models were not implemented in this
study due to their higher computational costs, they provide future
potential for incorporating unsupervised learning to detect and iso-
late novel or uncharacterized anomalies without pre-labeled fault
data. Another key advantage of RF models, besides their capability
to handle feature heavy datasets, for future space missions lies
in their potential for directly correlating model conclusions with
specific electrochemical degradation mechanisms, offering a deeper
understanding of degradation severity and origin. The potential
for high interpretability is crucial for autonomous spacecraft bat-
tery monitoring, where understanding why anomalies form can
increase mission success and safety. While this study did not em-
ploy advanced interpretability methods such as Shapley Additive
Explanation, Local Interpretable Model-Agnostic Explanations, or
attention mechanisms, their future integration would offer deeper
insights into relative feature importance and the model’s decision-
making processes, which is particularly relevant for the non-linear
relationships that RF models are designed to capture.
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6 Conclusion

This study directly addresses the critical challenges associated with
monitoring battery safety and health in space applications by inte-
grating synthetic data generation and advanced ML methodologies
for LEO temperature ranges. Incorporating the PyBaMM library
allowed for the accurate modeling of LiB performance under simu-
lated radiation, lithium plating, and thermal stresses representative
of unpredictable space environments. The developed LR and RF
regression models demonstrated high accuracy within their trained
and tested temperature ranges while following reproducible split-
ting and fitting procedures, indicating high potential for real-time
anomaly detection. However, discreet predictive limitations beyond
the training scope underscored the need for broader data variability
and stochastic features in future datasets.

A critical direction for future work is the application of un-
supervised learning techniques to detect novel or previously un-
characterized anomalies, which is particularly important given the
limited availability of labeled fault data for rare space events. To
validate and enhance applicability in subsequent studies, these
models should be evaluated within rigorous simulation environ-
ments or digital twin frameworks. Moreover, addressing temporal
degradation patterns and improving RUL estimation would benefit
from advanced sequence modeling methods such as Transform-
ers, LSTM networks, and Gated Recurrent Units. Ultimately, this
research paves the way for more reliable autonomous monitoring
systems with anomaly detection capabilities, offers potential for
unsupervised training, and significantly enhances spacecraft safety
by reducing human oversight and enabling immediate, proactive
responses to battery degradation.
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Abstract

This paper investigates whether Domain Adaptation techniques can
significantly improve the performance of Convolutional Neural Net-
works (CNNs) in image classification across varying domains and
distributions. Our work applies Deep CORAL with EfficientNetV2
for domain adaptation on the Office-31 dataset. We compare its
performance to a regular EfficientNetV2 model that doesn’t use do-
main adaptation, measuring improvements with metrics as follows:
accuracy, precision, recall, and F1 score. The CORAL-implemented
model demonstrated a 4.15% average boost in average precision,
recall, F1, and accuracy across all 3 trials.
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1 Introduction

The significance of Domain Adaptation remains of theoretical inter-
est in the context of machine learning. It has real-world implications
that are based on varying conditions and varying images based on
light, sound, saturation, etc. Currently, Domain Adaptation is bene-
ficial to systems that involve medical imaging, autonomous work,
and remote sensing, where collecting new data for every possible
domain is either expensive or impractical, or both. However, design-
ing effective domain adaptation algorithms remains a challenge.
Problems such as negative transfer, distribution mismatch, and lack
of labeled target data require consideration before deployment and
use.

Domain Adaptation has been considered as a promising tech-
nique to fix the domain shift problem by realigning the input data
to the model training data while still preserving enough dimensions
and key insights such that there will be no significant data loss in
the input data.

As seen in Figure 1, reproduced from Zhao et al. [13], the circles
represent different domains, and the shapes represent the features.

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
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target domain

source domain

Figure 1: A diagram of domain shift

Domain-invariant features are the shapes that appear in both do-
mains. Domains can differ in factors such as camera type, image
saturation, blur, or time of day used to capture images. For example,
in an object recognition task, domain-invariant features might focus
on the object’s shape and texture rather than lighting conditions,
which may vary between the source and target domains.

As seen in Figure 2, this is a group of images extracted from the
Office-31 dataset. As seen, these object images are captured from
different lighting, backgrounds, and resolutions, which represent
varying domains of feature representations.

Furthermore, Domain-invariant features are features that re-
main consistent and meaningful across different domains, allowing
machine learning models to perform well even when the data dis-
tribution changes between training (source domain) and testing
(target domain). Models trained on domain-invariant features can
generalize better to different environments; therefore, these models
can perform better on separate data distributions as long as the
features are still recognizable in the datasets. In general, domain-
invariant features are the key insights that are extracted from a
dataset, which allows machine learning models to generalize and
perform better in different domains.

Domain shift (or distributional shift) is a major problem that
can negatively affect the performance of machine learning models
when put in production [10]. Domain shift occurs when training,
validation, and test data are drawn from a probability distribution
that is different from the distribution of the data on which predic-
tive models will be applied in [10]. Considerable costs of domain
shift is the prediction of expected loss on the test data distribution.
Although domain shift is challenging to completely reduce, we can
gauge its adverse effects on out-of-sample predictions by taking
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Figure 2: A sample of images from each type of domain:
Amazon, Webcam, DSLR.
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special precautions when forming test samples. These are predic-
tions from the model on input data that fall outside of the domain
of the sample trained by the model.

Domain Adaptation offers a path forward in computer vision
by enabling models to have high performance across varying do-
mains and distributions without extensive training. By focusing on
reducing domain shift, the arising bias that comes with introducing
models in real-world settings, can be reduced, which ensures that
models remain reliable and trustworthy on real-world datasets.

2 Related Work
2.1 Domain Adaptation

Traditional machine learning aims to learn a model over a set of
training samples to find an objective function with minimum risk on
unseen test data [2]. In traditional machine learning, it is assumed
that training and test data are drawn from the same data distribution
and share similar joint probability distributions. This constraint
can be easily violated in real-world applications, since training, and
test sets can originate from different feature spaces or distributions.
The difficulty of collecting new instances with the same property,
dimension, and distribution, etc, as we have observed in the training
data, may occur due to a plethora of reasons, for example, the
statistical properties of a domain can evolve in time, or new samples
can be collected from different sources, causing domain shift.
Farahani et al., [2] refers to domain adaptation as consisting of
three main parts: input or feature space X , output or label space
Y, and an associated probability distribution p(x, y), where overall,
D = X, Y, p(x,y). Feature space X is a subset of a d-dimensional
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space, X C d,Y refers to either a space of binary —1, +1 or multi-
class 1,...K, where K is the number of classes, and p(x,y) is a
joint probability distribution over the feature-label space pair XY.
We can decompose the joint probability distribution as p(x,y) =
p(x)p(xly) or p(x,y) = p(y)p(ylx), where p(.) is a marginal dis-
tribution and p(.|.) is a conditional distribution.

Classification is a machine learning task that aims to learn a
function from labeled training data to map input samples to real
numbers.

h:X—- UV,

where h is a function or an element of a hypothesis space H, and
H refers to a set of all possible functions.

Generally, to obtain the best predictive function, we learn a
model on a given source dataset by minimizing the expected risk
of the source-labeled data:

Rs(h) = E(x,y)~ps (x,y) [ £(A(x). )]

= 2 [ b0, ps s
yey

1)
@)

where the expectation is taken with respect to the source distribu-
tion Pg, £(h(x),y) is a loss function that denotes the error between
the corresponding prediction by h(x) and y.

However, in supervised learning, the goal is to learn a model
with the most minimized loss, or the maximized likelihood given
parameters, when applying it to the target domain. Thus, we can
rewrite the above equation as follows:

Re(h) = () -p, [€(h(x).)] ©
= Y [ et pr(y ax @)
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where Pg(x,y) and Pr(x,y) are the joint probability distributions
of the source and target domains, respectively.

In the context of machine learning, Domain adaptation with
CORAL (CORrelation ALignment) involves aligning the statistical
properties of source and target feature spaces to reduce domain
shift. Specifically, CORAL minimizes the difference between the
covariance matrices of the source and target feature representa-
tions, pushing the model to learn domain-invariant features. Unlike
approaches that require labeled data in both domains, CORAL can
operate in unsupervised settings, making it useful when the tar-
get domain lacks annotations that can cause traditional machine
learning algorithms to fail.

Consider a scenario in which a model is being developed to clas-
sify road signs. The labeled training data (source domain) consists
of high-resolution images of European road signs captured in clear
weather using DSLR cameras. The model performs well on the
source domain; however, the goal is to also make the model work
effectively on images captured from dashcams in the United States
under different conditions, such as poor resolution and varying
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weather conditions. This data, one in the United States, has no
labels available.

In this context, Domain Adaptation becomes crucial. Although
tasks remain the same, the feature distributions between the source
and target domains differ significantly due to external conditions,
such as camera type, quality of resolution, or regional differences.
Domain Adaptation helps mitigate falling in this gap by aligning
feature representations between source and target domains regard-
less of labels in the source data. A method like CORAL can align
the statistical properties (covariances) to better generalize to the
unlabeled target domain by reshaping the training phase to allow
the model to recognize domain-invariant features.

As shown in Figure 3, reproduced from [7], applying CORAL
to CNNs involves a source dataset, which is labeled, and a target
dataset, which is an unlabeled data set from a distribution that is
different from the source data set. Both datasets are passed through
the same layers, consisting of the convolutional layers, and are
forwarded to the fully connected layers. Classification loss is com-
puted only on the source data, and CORAL loss is computed using
both datasets, with the purpose of minimizing the distance be-
tween the covariance matrices, effectively reducing domain shift
by forcing the model to recognize objects that are seemingly dif-
ferent from underlying features, as the same object with the same
domain-invariant features.

In contrast, generic transfer learning would involve using a pre-
trained model on a broad dataset, such as ImageNet, and then
fine-tuning it on your labeled source domain (European road signs).
Although this approach helps the model benefit from extracting
visual features, it does not address the underlying domain shift
between the source and target domains. Transfer learning also
typically assumes some labeled data in the target domain for fine-
tuning,.

The key distinction is that Domain Adaptation is designed to han-
dle domain shift between datasets sharing the same task, whereas
transfer learning focuses on reusing knowledge from a related task
or dataset, often requiring some level of supervision not necessarily
required in Domain Adaptation.

In classification tasks, the objective is to learn a function that
maps the input data to labels. In image classification, a classifier
assigns each image to a specific category, such as a dog or a cat.
To achieve the best predictive performance, a model is typically
trained on the source data set by minimizing the expected error
on the labeled source data. This is done by learning the model that
minimizes the loss between the predicted and true labels in the
source domain as per Farahani et al [2].

2.2 CORAL Architecture for Unsupervised
Domain Adaptation

In domain adaptation, domains can be considered as an object
consisting of three main parts: input or feature space represented
as , output or label space , and, which is joined with the probability
distribution of , creating a domain . Y refers to either the binary
or multi-class spaces of {-1,1} or {1,...K} where K is the number of
classes), [2].

Unsupervised Domain Adaptation (UDA) focuses on scenarios
where labeled data are available only in the source domain, while
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Figure 3: CORAL model architecture

the target domain lacks labels completely. The goal is to train a
model using the labeled source data that can generalize well to the
target domain. This is challenging because of the distribution shift
between the source and target domains. Domain adaptation aims
to build a classifier that can handle the shift in data distribution
between the source and target domains [2].

To address this challenge, Domain adaptation (DA) techniques
aim to bridge the gap between source and target domains. This
is achieved by aligning feature distributions among different data
domains to create effective and adaptive models. This technique is
particularly useful when there are differences in data characteristics
or when dealing with constraints on labels in the data. DA tech-
niques, such as CORAL, help bridge domain shifts by minimizing
domain discrepancies by aligning source and target features [2].

For an Unsupervised Domain Adaptation model, where the target
data is unlabeled, the CORAL Loss model is designed to address
the challenge of Unsupervised Domain Adaptation by aligning the
covariance matrices of the source and target features [8]. In the
architecture seen in Figure 3, source and target data are passed as
input through the same convolutional neural network. Although the
goal is to minimize the Cross-Entropy Loss and improve accuracy,
implementing CORAL loss adds a secondary objective: training
the feature extractors (Convolutional,Max Pooling, etc.) to align
representations of the same object, or class across varying domains,
in order to produce similar feature maps alongside minimized loss.

The classification loss, as well as CORAL loss, is extracted from
the model and backpropagated as such. The input to the classifica-
tion loss remains the same. However, CORAL Loss is extracted from
the outputs passed after the final feature extraction layer, when
both the source and target data are passed into the model, with
the covariance matrices being calculated before being passed into
the CORAL Loss function. The backpropagation algorithm with
respect to CORAL Loss, determining the covariance matrix, and
calculating the CORAL Loss are described below.

2.3 CORAL Loss

Suppose that we are given source training batches where i €
{1,...,L}, and Dg = {x;} such that x € R with labels Lg = {yi},
and unlabeled target data Dt = {u;}, where u € RY. Assume the
number of source and target data is ns and n; , respectively. In this
case, both x and u are the specific d-dimensional deep layer activa-
tion function o(I) inputs labeled I that we are trying to tune and Cs
and Cr are the respective second-order (covariance) matrices for
the source and target data for the features, as per Sun and Saenko
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Figure 4: CORAL Alignment Demonstration

[8]. Covariance matrices represent how each feature varies with
other features in a dataset, hence their correlation.
The covariance matrices are given by:

Cs = (DSTDS - % (17Ds)" (1TD5)) )

ng —1

Simply, the CORAL loss is the distance between these two ma-
trices, given by:

nt—1

1
102 ©)
where || - || % represents the Frobenius norm for square matrices.
The loss is managed like other standard evaluation metrics such as
MSE or cross-entropy; it is calculated per batch and averaged over
training steps [7].

The Frobenius norm quantifies the distance between the source
and target covariance matrices in a high-dimensional space. This
distance represents the domain discrepancy, and the neural network
is trained to minimize this discrepancy, thus reducing the domain
shift and improving generalization across different domains [8].
The model is trained to recognize domain-invariant features by
aligning the covariance matrices to the same domain.

The gradient with respect to the input features can be backprop-
agated as follows:

IlcoraL = ICs - Crll%

dlcoraL _ 1 Y

opd  dins—1)

T 1 T T TT
[(DS—%(I Ds) 1 ) (Cs = Cr)

(10)
Figure 4 demonstrates potential feature distributions of the source
and target domains, represented as two clusters. The objective of
CORAL alignment is to minimize the distance between these two
clusters by reducing the disparity between their covariance struc-
tures. The target feature distribution remains at a fixed position,
and the source feature distribution moves towards the target. After
CORAL Alignment, caused by the generalization of neural network
parameters with respect to the CORAL loss, the two clusters are
represented very close to one another, effectively illustrating that
the model has recognized the domain-invariant features that causes
these distributions to be alike.
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It is necessary to emphasize that minimizing this loss can poten-
tially lead to overfitting to the source domain, resulting in reduced
performance on the target domain. Having a simple reduction in
CORAL loss alone may degenerate some features. The network may
project the sources and targets to a single point, and the loss ap-
proaches 0 [8]. Secondly, the CORAL loss and classification loss are
designed to be used simultaneously to address both limitations of
the loss. The loss of classification does not account for the domain
discrepancy that CORAL loss measures. This is where weighted
CORAL losses arise.

IroraL = lcLass + A lcoraL (11)

Where ¢ is the number of CORAL loss layers and 1 is a weight
factor that trades adaptation and precision to reach the lowest loss
[7].

When integrating different Domain Adaptation techniques in
models, it is essential to recognize the various types of domain
shifts. This is required to understand what techniques are required
to mitigate the effects of domain discrepancy. The following are
common distribution shifts.

2.4 Alternate Domain Adaptation Technique:
Subspace Distribution Alignment

Another method of domain distribution alignment is discussed in
[9] paper that provides a solution to a common domain shift called
Subspace Discrepancy.

Subspace discrepancy describes a scenario where observations
are distributed as physical objects in the source and target domains
but where the features used to describe them in one or the other
are different and related by an unknown change of coordinates. For
example, an object seen from different angles, as per Lemberger
and Panico [5].

Assume that there is a source domain, named Dg € {Xs, Y} and
a target domain Dr € {X7} which is unlabeled. d represents the
number of feature dimensions.

We compute the Principal Components from each Domain using
Principal Component Analysis (PCA).

Let Pg € RP xd, representing the source subspace basis

Let Pr € RP*4, representing the target subspace basis

The objective is to calculate M such that the source subspace, is
aligned with the target subspace: PsM ~ Pr

Similar to Domain Adaptation using CORAL Loss function, the
distance between these two subspaces in a multidimensional space
must be minimized. This is formulated as the minimization Frobe-
nius Norm between Pg and P, where

Mpsy = argmin ||PsM; = Prlf (12)
t
Expanding the equation, there is a closed-form solution of
IPsM; — Prl|% = Tr[(PsM; = Pr)T (PsM; = Pr)].  (13)

Taking the derivative with respect to M and setting it to zero results
in:

Mp41 = P§ Pr. (14)
With the optimal mapping, the aligned source subspace is:
P51 = PsMz+1 = Ps(Pg Pr). (15)
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Then, source data X is projected into the aligned representation:
Zs = XsPs—t, Zr =XrPr, (16)

where Z7 is the target data representation in the Py subspace.

Using the minimization of the Frobenius Norm, with respect to
the computed linear mapping of M yields a map that accurately
transforms the Source distribution Dg to Dt [9].

2.5 Categories of Domain Shift

2.5.1 Conditional Shift. Conditional Shift occurs when the mar-
ginal distribution of the input features changes between the source
and target domains, but the conditional distribution of the labels
given the inputs remains the same. In other words, while the under-
lying relationship between the features and labels remains stable,
the input features themselves have shifted. For instance, in an object
recognition task, if a model is trained on images of objects taken un-
der one set of lighting conditions and then applied to images taken
under different lighting conditions, a covariate shift occurs. The
model may struggle because the features it learned during training
are no longer sufficient to generalize to the new conditions.

Let p(y:, x¢) be a joint probability distribution such that the
output y; is the output and x; is the input which will be extracted
from our model. Domain shift occurs when training, validation,
and / or testing is not drawn from the joint probability distribution
but from a conditional probability: p(z; € U)

Where z; is a random latent variable; note that z; depends on
yr,x; and U is a proper subset.

2.5.2 Covariate Shift. The covariate shift refers to a situation in
machine learning where the distribution of the input data (features)
changes between the training and testing phases, while the rela-
tionship between the input and output (the conditional distribution
of the output given the input) remains the same. This shift can lead
to degraded performance because the model was trained on data
that do not fully represent the distribution it encounters during
testing or real-world deployment [8].

Let p(Xtrain) represent the data distribution of the input data
applied during the training phase. Let p(X;esr) represent the data
distribution during the testing phase:

In the current problem, we assume that p(Xtrain) # (Xtest),
however, p(Y) = p(X) where X is all input data and Y represents
output labels [7]. Hence, p(Y|X) represents the relationship be-
tween the input features and the output labels remain constant
across the source and target domains.

If the model is trained on a specific data distribution, there may
be bias to a certain distribution and/or certain patterns that are not
domain-invariant features. To represent this distribution shift, met-
rics such as the Kolmogorov-Smirnov test and the Jensen-Shannon
divergence test are used [1].

3 Methods

One of the most widely used datasets for studying domain adap-
tation is the Office-31 dataset [3]. This data set includes 4,110
images across 31 category of objects captured in three distinct
domains:DSLR, Webcam, and Amazon. These domains represent
different imaging conditions: DSLR images are of high quality and
resolution, whereas Webcam images are grainy and noisy. The
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Amazon domain consists of product images downloaded from the
e-Commerce platform, often featuring different backgrounds and
lighting conditions. As mentioned earlier, the domain shift rep-
resented in this dataset is a covariate shift as the source input
distribution does not equal the target distribution; however, the re-
lationship between the input and labels stays constant. The overall
distribution of this data set makes Office-31 a powerful dataset to
test model robustness.

3.1 Domain Shift

In a Domain Adaptation, it is crucial to measure how different the
source and target data distributions are, since the primary challenge
lies in training a model on one domain and ensuring it performs well
on another with a potentially different distribution. This is where
Kolmogorov-Smirnov (KS) and Jensen-Shannon (JS) Divergence
test become valuable tools [1]. The KS test is useful for statistically
testing whether the source and target distributions (e.g., pixel inten-
sities or individual feature values) come from the same population,
offering a formal hypothesis test with p-values [1].

JS Divergence provides a smooth, symmetric measure to quantify
the distance between two probability distributions, making it partic-
ularly effective for comparing SoftMax outputs or high-dimensional
learned feature embeddings.

KS Test answers the question of whether two dataset distribu-
tions (in our case, the webcam and DSLR) are drawn from the same
data distribution by measuring the maximum vertical distance. If
the distance is small, the distributions are similar; if it is large, the
distributions are different. The KS statistic measures the maximum
distance between two cumulative distribution functions (CDFs). KS
plots the CDF of each dataset and finds the biggest gap between
them.

JS Divergence, however, focuses on probability distributions,
specifically the average of the two distributions, and measures
how each differs. The JSD measures the similarity between two
probability distributions (P) and (Q)

Metric Value
KS Statistic 0.0131
KS p-value 8.02 x 1072
JS Divergence 0.00959

Table 1: Pre-training feature discrepancy between source
(DSLR) and target (Webcam) domains. KS: Kolmogorov-
Smirnov test, JS: Jensen-Shannon divergence.

The results indicate a clear distribution shift between the DSLR
and Webcam datasets. A Jensen-Shannon Divergence of 0.1669 sug-
gests a moderate difference in the average pixel distributions, reflect-
ing changes in lighting, contrast, or color profiles. The Kolmogorov-
Smirnov test further supports this, with a high statistic of 0.6670
and a p-value of 0.0000, confirming a statistically significant differ-
ence in image-level intensity distributions. Together, these metrics
highlight the need for domain adaptation techniques to address the
shift when training models across these datasets.
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3.2 Objectives of the Experiment

This experiment investigates the value of Unsupervised Domain
Adaptation to improve the generalization of image recognition
models to capture domain-invariant features and to recognize and
classify images accurately in different environments outside of the
training dataset. We will apply the supervised Deep CORAL do-
main adaptation technique using the CORAL loss function.. Unlike
B. Sun’s, J. Feng’s, and K. Saenko’s CORAL implementation with
AlexNet [7], this experiment will use EfficientNet version 2 (V2). Ef-
ficientNetV2, a deep convolutional neural network, is widely known
for its robust SOTA performance, known for its balance between
efficiency and accuracy, resulting in models that train faster and
are significantly smaller than other models, hence, it was picked to
reduce computational workload and time required between experi-
ments. This experiment is designed to test two phases:

Control Experiment: EfficientNetV2 without
Domain Adaptation

In the control experiment, a standard EfficientNetV2 model was
trained without domain adaptation. The model was trained on the
DSLR domain, which contains high-quality images, for 20 epochs
using a batch size of 64 and the Adam optimizer. The loss func-
tion used was cross-entropy loss for classification. A validation
split of 20% of the training data was used to mitigate bias. The
model was evaluated on the target domain, Webcam, which con-
tains lower-quality, noisier images representing a distribution shift.
Model performance was assessed using accuracy, precision, recall,
F1 score, and paired t-tests across trials.

Domain Adaptation Experiment: EfficientNetV2
with Deep CORAL

In the domain adaptation experiment, EfficientNetV2 was trained
using Deep CORAL to align feature distributions between the
source (DSLR) and target (Webcam) domains. Training was con-
ducted for 20 epochs with a batch size of 64 and the Adam opti-
mizer. The total loss combined cross-entropy classification loss and
CORAL loss as follows:

17)

ItotaL = lcrass + A lcoraL

where 1 = 10 to balance the contribution of classification and
CORAL losses. A 20% validation split was applied as in the con-
trol experiment. Performance metrics included accuracy, precision,
recall, and F1 score, averaged across all trials.
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4 Results
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Figure 5: Loss graph of CORAL-added EfficientNet V2

Seen in Figure 5, the lowest loss converges to near zero. This is
much more stable than without CORAL due to the property of
the CORAL loss to align domain-invariant features. Uniquely, the
CORAL loss becomes more stable at the very end, in comparison
to the control EfficientNetV2.
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Figure 6: Loss graph of no CORAL-added EfficientNet V2

Figure 6 shows much more unstable fluctuations in training
losses over the epochs. Unlike, CORAL-implemented EfficientNetV2,
there are significant fluctuations at the end at approximately epoch
no. 18, where, for example, trial 1 abruptly increases the loss by
1036%. Although there are fluctuations on the CORAL-implemented
EfficientNet that must be recognized, these abrupt fluctuations are
much more severe.
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Model Calc.  Desk Chair  Desk Lamp  Desktop PC  File Cab.
CORAL EfficientNetV2

Precision 1.0 1.0 1.0 0.8898 1.0
Recall 0.9785 0.9917 1.0 1.0 0.9123
F1 0.9889 0.9958 1.0 0.9410 0.9518
Control EfficientNetV2

Precision 1.0 1.0 1.0 0.9565 0.7555
Recall 1.0 0.9833 0.9630 0.7302 0.9825
F1 1.0 0.9915 0.9804 0.8121 0.8510

Table 2: A sample of performance comparison representing
all classes

As seen in Table 2, which contains a random sample of 5 classes
over 31 trained classes, CORAL considerably increased the preci-
sion, and recall of classes such as Desktop PC.

Metric t-statistic ~ p-value
Accuracy -5.0000 3.775e-02
F1 -4.0332 5.633e-02

Table 3: Paired t-test results comparing Baseline and CORAL
models.

For accuracy, seen in Table 3, the t-statistic of -5.0 indicates that
the mean CORAL accuracy is significantly higher than the baseline
model, which cannot be deduced by chance but instead refers to
the property of CORAL loss that recognizes the domain-invariant
features, allowing the model to recognize the features that exist
across all distributions. The p-value is 0.03775, which indicates
that the CORAL loss is statistically significant. This aligns towards
supporting the hypothesis that integrating CORAL loss directly
improved EfficientNet CNN performance.

As seen in Table 3, which also represent the F1 score, the t-
statistic of -4.0332 indicates a considerable trend between CORAL
implementation and higher F1 scores. However, the p-value of
0.05633 slightly exceeds the conventional margin of 0.05. Despite
the p-value, the negative t-statistic suggests that CORAL improves
model performance.

Average Training time of CORAL/ No CORAL CNN per trial

- [ ~
(7] o w»

Training time (s)
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Figure 7: The average training time per trial of CORAL and
No CORAL EfficientNetV2
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Figure 7 shows a significant time discrepancy between using No
CORAL and using CORAL. There is 29.55 % discrepancy, indicating
an important limitation to training with CORAL domain adaptation

CORAL: Avg Precision, Recall, F1 per Class Across All Trials

WWWWWWWW

Figure 8: Bar Graph of Precision, Recall, and F1 per class for
CORAL EfficientNetV2

Baseline: Avg Precision, Recall, F1 per Class Across All Trials
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Figure 9: Bar Graph of Precision, Recall, and F1 per class for
Control EfficientNetV2

Figure 8 and 9 show significant changes in the metric evalu-
ation between CORAL implementation and regular EfficientNet.
Although, CORAL fails to increase the precision, recall or F1 on
multiple classes, it, however, increased the precision and recall on
classes which the control EfficientNet evaluated the poorest on,
such as the desktop_computer class by 16.67%, letter_tray by
25%, mobile_phone by 7%, etc, on average.

Model Accuracy  Precision Recall F1
Baseline (No CORAL)  0.9586 0.9575 0.9525  0.9579
CORAL 0.9689 0.9656 0.9682  0.9691

Table 4: Comparison of Baseline and CORAL-enhanced Effi-
cientNet Accuracy, and average Precision, Recall, F1 across
all classes and trials.

Metric Baseline EfficientNetB0O  CORAL EfficientNetB0

Overall Performance

Accuracy 0.9586 + 0.0029 0.9689 £ 0.0000
Weighted F1 0.9579 + 0.0039 0.9691 + 0.0001
Paired t-test (Baseline vs CORAL)

Accuracy t / p —5.0000/3.78 X 1072

Weighted F1t/ p —4.0332/5.63 x 1072
Table 5: Comparison of Baseline and CORAL EfficientNetV2
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5 Discussion

The use of CORAL in EfficientNetV2 has resulted in significant
performance improvements in terms of a variety of classification
metrics when using Domain Adaptation. As seen from Figure 5, 8,
and Table 4 the CORAL-implemented EfficientNetV2 generally per-
formed better than the baseline model (non-CORAL) on the target
sample. This verifies the hypothesis that aligning the source and
target features using CORAL makes the model more generalizable
in domain discrepancy scenarios.

As seen in Table 4, the CORAL-implemented model demon-
strated a 4.15% average boost in precision, recall, F1, and accuracy
against the metrics. While this margin of improvement may seem
insignificant, relative to domain adaptation work, marginal values
are likely to approach better real-world standards in deployment.
Additionally, this gain held across most categories and improved the
F1 values of the desktop_computer and file_cabinet classes,
suggesting broad advantages.

One of the most significant results is obtained by evaluating
the model on poorly performed classes, which, in this case, are
desktop_computer and file_cabinet. These classes had previ-
ously given abnormally low precision, recall, and F1 scores, espe-
cially compared to the rest of the metrics across all the classes. With
CORAL implementation in the training procedure, both classes ob-
served a significant increase their F1 scores, which effectively shows
that CORAL enhances the model’s capability for learning general-
ized features that are consistent across multiple domains, even for
classes where capturing these features might be difficult, and may
become overcomplicated by CORAL-implementation. This acts to
further strengthen CORAL as an effective tool in the case where
specific classes are adversely affected by domain shift.

Training dynamics further suggests the effectiveness of CORAL.
Figure 5 shows that the categorical cross-entropy loss after training
was 14% smaller in the case of CORAL implementation in compari-
son to the baseline, seen in Figure 6. This suggests better-calibrated
and more confident predictions, which is a quality required in mod-
els that are being deployed and exposed to real-world contexts.
There are also less significant fluctuations in loss for the CORAL-
added model. Moreover, a lower loss indicates improvements in con-
vergence, reinforcing the concept that CORAL provides a smooth
optimization path by minimizing the discrepancy between source
and target features.

Training dynamics were similar to those of B. Sun and K. Saenko
[7], shown in figure 10, which was trained on a pretrained AlexNet
model. The CORAL may not have resulted in a lower loss between
the source and target samples in comparison to the baseline model,
however the CORAL Loss attained a more stable loss progression
than the classification loss.

This improved result trades off with computing time. Incorporat-
ing CORAL resulted in additional computational cost and increased
training time by approximately 29.55% across all 3 trials. This is
because of additional matrix operations to calculate second-order
statistics alignment across domains. Depending on the context, or
the problem certain machine learning models are required to solve,
trade-offs may potentially be required between increases in model
complexity, and the time required to complete the training phase.
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Figure 10: Classification loss vs CORAL Loss in minimizing
domain discrepancy

6 Limitations

Integration of CORAL into EfficientNetV2 has resulted in notable
improvements in domain adaptation performance, however, several
limitations exist that challenge consideration of deployment into
real-world contexts.

The incorporation of CORAL introduces an additional compu-
tational workload. The alignment of covariance, second-order sta-
tistics between the source and target samples requires additional
matrix operations, especially on high-dimensional features, leading
to a 29.55% increase in training time. This computational demand
may uncover challenges for deployment while still factoring in re-
source usage and management, especially in resource-constrained
areas or applications that require real-time processing.

If the CORAL loss is emphasized during training, there is a
potential risk of the network learning degenerate features. For
example, minimizing CORAL loss alone might lead the model to
project both source and target to a point in a multidimensional
space that results in an alignment that yields a lack of discriminative
power [7].

The effectiveness of CORAL depends upon the quality of the
features extracted by the CNN. Using pretrained architectures that
may not capture domain-invariant features, such as AlexNet, which
can limit the alignment [12] of second-order statistics and repre-
sentable features. Furthermore, concurrent training of CORAL and
a classifier may not efficiently align features if the domain-invariant
features that models aim to recognize are not satisfactory.

CORAL operates under the assumption that the solution to do-
main shift is to align only second-order statistics between domains.
This may not hold in scenarios where greater-order statistical dif-
ferences exist that limit CORAL’s ability to adapt to complex, real-
world scenarios [12].

While CORAL enhances domain adaptation capabilities, its lim-
itations, ranging from computational demands to statistical mis-
representation and non-feasibility, should be carefully considered
when deploying in real-world settings.

7 Future Work

Expanding on CORAL implementation, several open challenges
and promising paths remain. Future research needs to be directed
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at constructing unified frameworks that can address multi-source
and multi-target paradigms. Currently, the majority of methods are
only for single-source and single-target cases, whereas real-world
tasks often involve multiple sets of uniformly distributed domains.
Designing algorithms that can effectively leverage multiple sources
of information and adapt to a variety of target conditions is not
trivial but a significant step towards real-world deployment.

One direction is to explore computationally light variations or
hybrid methods that maintain CORAL’s alignment capability with-
out significantly increasing training time. Because our CORAL-
trained EfficientNet model witnessed a 29.55% increase in training
time due to second-order matrix computation, optimizing CORAL’s
implementation or integrating light-weight domain alignment tech-
niques can potentially allow it to be more applicable in real-time
or resource-constrained situations.

In addition, domain robustness and fairness are key areas of
future research for model robustness. Domain shifts are likely to ex-
aggerate performance fluctuations, especially when models operate
in performance-critical and socially sensitive domains. Future work
needs to focus on the development of domain adaptation techniques
that are not only accurate but also invariant to adversarial forces
and are robust against dataset bias. Recent studies have explored
adversarial approaches to mitigate such biases and enhance model
resilience, seen in the works of Tzeng et al. [11], and Huang et al.
[4]. Moreover, transparency and fairness in adapted models are
crucial, particularly in applications that range from healthcare to
surveillance and autonomous systems (self-driving cars).

Finally, understanding the decision-making process of domain
adaptation models is essential for confirming accountability and
interpretability. Explainable AI (XAI) algorithms, such as LIME and
SHAP, are commonly used to uncover reasoning behind model
predictions. Integrating XAl into domain adaptation systems can
help recognize model behavior and ensure transparency, seen in
the work of Ribeiro et al. in applying LIME for model transparency
[6].

Addressing these challenges, such as improving robustness and
fairness, improving simulation-to-real transfer, and hosting explain-
ability in CORAL-assisted machine learning models, will become
critical for the advancement and deployment of domain adaptation
in computer vision.

8 Conclusion

This study highlights the importance of Domain Adaptation in
mitigating the effects of domain shift in computer vision. By us-
ing CORAL with EfficientNetV2, we were able to align the feature
distributions of the source (Webcam) and target (DSLR) domains,
resulting in significantly improved performance on target domain
classification tasks. Compared to the baseline model of Efficient-
NetV2, the CORAL-enhanced model consistently improved the
performance over varying domains across all evaluated classes.
The Jensen-Shannon Divergence (JSD) and the Kolmogorov-
Smirnov Test (KS Test) confirmed a detectable distributional shift
between the DSLR and Webcam domains, restating the need for an
adaptation technique that centralizes all training data to the model.
Deep CORAL effectively minimized the discrepancy by aligning the
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covariance matrices, allowing the model to learn valuable domain-
invariant features that a non-CORAL-enhanced model may not
recognize.

Overall, these results effectively demonstrated that using domain
adaptation techniques such as the investigated CORAL are not only
theoretically significant but also practically effective. In real-world
scenarios, domain adaptation enables models to generalize better
across varying conditions, recognizing domain-invariant features
regardless of external factors and stimuli.
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