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Comparative Analysis of Vision Transformer and ResNet50 for
Glaucoma Detection: Balancing Performance and Efficiency

Eric Hwang
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Abstract
This study develops and evaluates the performance and compu-
tational efficiency of ResNet50 (CNN-based architecture) and Vi-
sion Transformer (Transformer-based architecture) for detecting
glaucoma from fundus photographs. Glaucoma is one of the lead-
ing causes of irreversible blindness that affects millions of people
around the world. Using deep learning methods, both models are
trained to learn indicators of glaucomatous fundus photographs,
such as thinning of the retinal nerve fiber layer (RNFL) and nasal-
ization of blood vessels, to classify healthy and glaucomatous eyes.
Gradient-weighted Class Activation Mapping (Grad-CAM) was
used to interpret the model predictions by visualizing the regions
of fundus photographs that contributed most significantly to the
classification. With a publicly available dataset, we fine-tuned both
models by leveraging transfer learning with a small learning rate
(0.0001) on pre-trained layers. Both models were assessed with
metrics such as accuracy, F1 score, inference time, throughput,
and maximum GPU memory usage under controlled conditions.
ResNet50 outperformed ViT, achieving higher accuracy (90.72% vs
87.64%) and an F1 score (0.9104 vs 0.8614) while being significantly
more computationally efficient, with 68.48% faster inference and
50.52% lower GPU usage. These findings highlight the suitability
of ResNet50 over ViT for use in resource-constrained medical set-
tings to assist ophthalmologists diagnosing patients, as it effectively
balances performance and efficiency.
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1 Introduction
Glaucoma is a chronic eye disease that is one of the leading causes
of blindness and affects more than 80 million people around the
world, with early diagnosis and treatment being the most important

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
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steps to prevent vision loss [7]. However, traditional approaches to
manually diagnosing glaucoma can be time consuming and subject
to high variability as they are based on subjective analysis [6]. As a
result, these limitations can lead to delayed diagnosis, particularly
in high-footfall and resource-constrained medical settings where
ophthalmologists are in short supply.

With recent advancements in Artificial Intelligence (AI), Deep
Learning (DL) models have emerged as transformative tools for
medical imaging, offering accurate and time-efficient disease di-
agnosis. Architectures based on Convolutional Neural Networks
(CNNs) have set the benchmark for medical image classification,
while Vision Transformers (ViTs) [2] showcase the potential to out-
perform CNN-based architectures. Despite advancements in AI for
healthcare, few studies have systemically compared CNNs and ViTs
on both computational efficiency and performance for glaucoma
detection. Along with performance itself, computational efficiency
is also a crucial metric, often overlooked in previous research due to
its focus on surpassing human expertise, particularly when evaluat-
ing a model’s suitability to be used in resource-constrained medical
environments, which is where the implementation of an automated
diagnosis system should be of a higher priority.

Therefore, to address this gap, our study evaluates ResNet50
[4] and ViT using a collection of publicly available fundus pho-
tograph datasets. By leveraging transfer learning and fine-tuning
both architectures, we rigorously analyze performance metrics (ac-
curacy, F1 score) and computational efficiency metrics (inference
time, throughput, maximum GPU memory usage) to determine
their suitability for being implemented as an assistive tool for glau-
coma diagnosis. Through this analysis, we establish a benchmark
for deploying deep-learning tools for retinal imaging in health-
care, specifically tailored for glaucoma detection in diverse clinical
settings with implications for broader medical applications.

2 Related Work
In the medical field, CNNs traditionally have performed very well
in medical image classification and segmentation. In 2020, a com-
prehensive study by García et al. assessed two CNN architectures
using a circumpapillary Optical Coherence Tomography (OCT) test
dataset (glaucomatous: 93, healthy: 156 B-scans), concluding that
fine-tuned CNNs, especially VGG architectures achieved a high area
under the ROC curve [3]. Similarly, a study by Kulkarni and Ahmed
evaluated a more exhaustive list of CNNs and histogram equal-
ization techniques using a small (glaucomatous: 396, healthy: 309)
dataset, with VGG-19 achieving the highest accuracy (97.9%) and
ResNet architectures achieving the highest specificity score (98.4%)
[8]. These studies highlight the effectiveness of CNN architectures
in glaucoma detection.
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Recently, there has been active research on utilizing ViTs for
medical imaging. A study by Nurgazin et al. demonstrated that ViT
with ProtoNet, a few-shot learning algorithm, can achieve competi-
tive performance against state-of-the-art CNN-based approaches in
medical benchmark datasets [10]. More specifically for glaucoma
detection, Hwang et al. demonstrated that ViTs perform compa-
rably to CNNs in glaucoma detection using fundus photographs
(total: 3,142), achieving a comparable area under the ROC curve and
accuracy. They concluded that ViTs are preferable when prioritizing
sensitivity over minimizing false positives [5].

Overall, the existing literature underscores the efficacy of both
CNNs and ViTs in medical imaging, with emerging evidence sug-
gesting that ViTs may offer competitive, if not superior, perfor-
mance in medical imaging. While a comparative analysis of diag-
nostic performance exists such as [5], a comprehensive evaluation
that incorporates computational metrics for glaucoma detection
and considers the constraints of resource-limited clinical settings
is lacking. Addressing this gap is crucial for informing the selec-
tion of appropriate models for deployment in varying healthcare
environments.

Furthermore, although these studies demonstrate the effective-
ness of CNNs and ViTs, their small dataset sizes limit their general-
izability to larger, more diverse clinical populations. By leveraging a
significantly larger collection of fundus photograph datasets (total:
7815 without sampling), this study addresses this limitation, pro-
viding a more rigorous evaluation of CNN and Vision Transformer
(ViT) architectures. This larger dataset enables more robust perfor-
mance comparisons and enhances the applicability of findings to
real-world clinical settings.

Finally, while [5] used a collection of datasets separately for com-
parison and without balancing the dataset, which yielded valuable
insights on architectural differences, we balanced the dataset using
sampling techniques with data augmentations to ensure equitable
representation of glaucomatous and healthy cases, reducing poten-
tial biases and improving the reliability of the model evaluation.
This methodological enhancement strengthens the robustness of
the results, making them more applicable to diverse clinical set-
tings.

3 Methods
3.1 Data Collection and Preprocessing

Figure 1: Sample Images of Fundus Photographs from Each
Dataset

The dataset used for this study is a collection of 6 public fundus
photograph datasets, downloaded from Kaggle [11] which consists

of the following: ACRIMA, DRISHTI-GS, G1020, LAG, ORIGA, and
RIM-ONE [1]. Using a collection of datasets increases the total
dataset size and also increases data diversity which ensures that
the models learn to generalize to variations such as differences in
fundus photography protocols, imaging equipment, and patient
demographics.

In total, There are 7815 images (healthy: 5002, glaucoma: 2813)
of fundus photographs. Figure 1 demonstrates sample fundus pho-
tographs from each dataset. Since there is a dataset imbalance, with
a higher number of healthy eye scans, random oversampling was ap-
plied to balance the dataset, preventing the models from becoming
biased toward the majority class. This step is critical in the med-
ical context because false negatives (failing to identify glaucoma
correctly) can have severe consequences for patients as the early
detection of glaucoma is essential. With random oversampling, the
dataset becomes (healthy: 5002, glaucoma: 5002).

Figure 2: Sample Images of Data Augmentation Methods

As shown in Figure 2, the multiple data augmentation methods
(horizontal flip, random rotation, and color jitter) were used to
simulate real-world variations in retinal imaging conditions while
also increasing the total dataset size which prevents overfitting.
Horizontal flips simulate eye symmetry, rotations mimic misalign-
ment during image capture, and color jitter compensates for vari-
ations in imaging equipment and lighting conditions. As a result,
it makes the models more robust, which is especially important
in resource-constrained environments where imaging quality may
vary significantly.

Moreover, All images were resized to 224x224 pixels to standard-
ize input dimensions which allows compatibility with ResNet50
and ViT architectures. Furthermore, the fundus photograph can
still preserve the indicators of glaucoma, such as nasalization of the
blood vessels and thinning of the retinal nerve fiber layer (RNFL) [9],
while optimizing computational efficiency, a key consideration for
deployment in resource-constrained medical environments. Finally,
the dataset was randomly split into training data and validation
data with a 75:25 ratio which allows sufficient data for training
while having enough data for an unbiased validation to evaluate
the metrics.

3.2 Model Selection and Modification
Since ResNet achieved the highest specificity in [3] and is widely re-
searched in medical classification tasks such as ResNet-22 for breast
cancer classification [14], ResNet50, an architecture more robust
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Figure 3: ResNet50 Model Schematic (Illustration inspired
from [12])

Figure 4: ViT Model Schematic (Illustration inspired from
[2])

than the original ResNet34, was selected as a representative CNN
model against ViT. This comparison highlights the strengths and
limitations of convolutional and transformer-based architectures
in glaucoma detection.

Both models were initialized with ImageNet pre-trained weights
and then were trained with the glaucoma dataset to facilitate trans-
fer learning. Their entire network was fine-tuned with a small
learning rate to allow them to adapt to the specific task of detecting
glaucoma from general image classification.

The activation function of the output layer was changed to a
sigmoid function as the task is binary classification. Furthermore, it
makes the models output a prediction between 0 and 1 for detecting
glaucoma, which allows the model to be used as a screening tool
or to assist ophthalmologists in diagnosing patients.

L2 Regularization (weight decay) was used as this value mini-
mized overfitting by penalizing large weights which encourages
simpler model representations. Regularization is particularly cru-
cial in medical imaging tasks, where preserving the model’s ability
to generalize across diverse patient data is vital.

Furthermore, The number of epochswas set to 10 for bothmodels
as during preliminary experiments, ViT’s training and validation
loss began diverging, indicating overfitting, after the 10th epoch due
to the relatively small dataset and transformer-based architecture’s
high capacity for pattern memorization. Hence, by limiting the
number of epochs, we balanced the models’ learning capacity and
generalization.

3.3 Metrics
Accuracy =

Number of Correct Predictions
Total Number of Predictions

× 100

𝐹1 = 2 · Precision · Recall
Precision + Recall

Accuracy and F1 score were chosen as primary metrics for mea-
suring model performance as accuracy provides an overall measure
of each model’s ability to accurately detect glaucoma from fundus
photographs. Furthermore, the F1 score balances sensitivity and
precision which is crucial in medical classification tasks.

• Inference: time taken for the model to make a prediction on
a given input, measured in seconds.

• Throughput: number of predictions made by the model per
unit of time, measured in images/second.

• Max GPU Memory Usage: the peak amount of GPU memory
used during training, measured in MB.

On the other hand, Computational efficiency was assessed using
inference time per image, throughput (images processed per sec-
ond), and maximum GPU memory usage during inference. These
metrics were chosen to evaluate the feasibility of deploying these
models in medical environments with restricted computational
resources or a high density of patients.

3.4 Controls
Both models were trained in equal hardware and software condi-
tions. Both were run on Google Colaboratory with T4 GPU (High-
RAM 51GB) as a hardware accelerator. Equal versions of Python
(3.10.12) and Pytorch (2.3.1+cu121) were used to prevent discrepan-
cies. Moreover, the same data set was used with the same ratio of
train-validation split.

In terms of model design, the pre-trainedweights for bothmodels
were generated using the ImageNet dataset which gives them a
fair baseline to begin transfer learning. Both models were trained
with Binary Cross Entropy Loss (BCELoss) as the loss function and
Adam optimizer as the optimization algorithm to ensure they are
both minimizing the same loss function and optimizing towards
the same goal.

Overall, the following hyperparameters were kept constant for
equal training conditions.

• Epoch: 6
• Learning Rate: 0.0001
• L2 Regularization - Weight Decay: 0.0001
• Batch Size: 32

4 Results

Epoch Train Loss Validation Loss Accuracy F1 Inference Time Throughput GPU usage
1 0.3341 0.3852 82.37% 0.8301 8.4035 s 297.61 img/s 782.34 MB
2 0.2243 0.2287 88.56% 0.8844 8.4699 s 295.28 img/s 782.04 MB
3 0.1764 0.2181 89.40% 0.8912 8.4621 s 295.55 img/s 782.04 MB
4 0.1602 0.2385 89.00% 0.8907 8.4657 s 295.43 img/s 782.04 MB
5 0.1392 0.2020 89.96% 0.8984 8.4778 s 295.01 img/s 782.04 MB
6 0.1116 0.2034 90.72% 0.9104 8.4417 s 296.27 img/s 782.04 MB

Table 1: Results of ResNet50 Training and Validation
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Epoch Train Loss Validation Loss Accuracy F1 Inference Time Throughput GPU usage
1 0.4704 0.3387 84.69% 0.8340 26.85 s 93.14 img/s 1580.54 MB
2 0.2972 0.2621 87.60% 0.8693 26.80 s 93.32 img/s 1580.54 MB
3 0.2403 0.2207 88.64% 0.8822 26.83 s 93.21 img/s 1580.54 MB
4 0.2145 0.2359 88.68% 0.8801 26.86 s 93.13 img/s 1580.54 MB
5 0.1993 0.2588 88.04% 0.8781 26.86 s 93.12 img/s 1580.54 MB
6 0.1925 0.2612 87.64% 0.8614 26.75 s 93.49 img/s 1580.54 MB

Table 2: Results of ViT Training and Validation

Figure 5: Train and Validation Loss over Epoch, ResNet50

Figure 6: Train and Validation Loss over Epoch, ViT

5 Discussion
5.1 Training and Performance Analysis
For ResNet50, the training loss steadily decreases from 0.3341 to
0.1116 over 6 epochs, and the validation loss also decreases from
0.3852 to 0.2034 with only a slight increase from Epoch 3 to 4. There-
fore, it indicates that ResNet50 generalized well without significant
overfitting issues. For ViT, the training loss drops sharply from
0.4704 to 0.2972 over the first 2 epochs but decreases much more
slowly after reaching the final training loss of 0.1925. Its validation
loss initially decreases from 0.3387 to 0.2207 for the first 3 epochs
but increases slightly afterward to reach 0.2612 at the final epoch.
This indicates that ViT had slight overfitting at later epochs as vali-
dation loss starts to increase while train loss decreases but overall,
it generalized quite well.

Furthermore, ResNet50 achieved a 90.72% accuracy for the final
epoch with an F1 score of 0.8614. This demonstrates that the model
had a very good performance as it predicted most of the dataset
correctly without overly predicting one side, indicated by a high
F1 score. Although ViT also had a strong performance with 87.64%
accuracy and 0.8614 F1, ResNet50 exceeded ViT in performance
metrics with 3.08% higher accuracy and 0.049 higher F1. It can
also be observed that the accuracy of ViT stabilizes from Epoch 2
onward which implies that the model is converging where it is no
longer learning more information from the given dataset. Lastly, the
average of each computational metric over 6 epochs was calculated
as shown in Table 3.

5.2 Computational Efficiency and Practical
Implications

Model Average Inference Time Average Throughput Max GPU Usage
ResNet50 8.45 s 295.86 img/s 782.09 MB

ViT 26.83 s 93.24 img/s 1580.54 MB
Table 3: Comparison of Computational Metrics

In general, ResNet50 was 68. 48% faster in inference making
and predicted 217. 31% more images/second while using 50. 52%
less GPU, outperforming ViT also in computational metrics. The
difference between the two models was significant, where ViT
was using approximately double the GPU memory as ResNet50
while making predictions much slower. Furthermore, ResNet50
even exceeded ViT in performance metrics.

The big gap in computational efficiency between ResNet50 and
ViT highlights that ResNet50 is much better suited to be deployed
in resource-constrained medical environments such as rural clinics
and mobile diagnostic units or high-footfall environments. While
ViT showcased promising results for diagnostic performance, its
computational inefficiency directs to the need for further optimizing
Transformer-based models for real-world applications.

The computational inefficiency of ViT is likely caused by the
self-attention mechanisms which enables global feature extraction,
but leads to quadratic complexity. This explains the significantly
higher GPU memory usage and slower inference time of ViT as
ResNet50 has more linear computation process. Furthermore, the
ViT used in the investigation, ViT_B_16, has notably higher number
of parameters with 86,567,656 [16] compared to 25,557,032 parame-
ters [15] of ResNet50. This likely explains the slight overfitting for
the last 3 epochs as it could’ve begun memorizing the dataset.

5.3 Grad-CAM Visualization
Figure 7 demonstrates the Gradient-weighted Class ActivationMap-
ping (Grad-CAM) [13] visualization for ResNet50, mapping different
regions on the fundus photograph that the model identified as most
influential in detecting glaucoma. While the optical nerve head
is visible on the activation map, the model appears to focus more
on the surrounding peripapillary regions which suggests that it
relies on subtle retinal features beyond the optical nerve head. This
Grad-CAM visualization provides insights to the model’s decision-
making process. The focus on peripapillary regions in the Grad-
CAM visualization could explain why ResNet50 outperformed ViT
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Figure 7: Grad-CAM Visualization of ResNet50

as it localized these small but critical indicators of glaucoma com-
pared to ViT which architecturally focuses more on global patterns.
Moreover, utilizing Grad-CAM visualizations for medical diagnosis
have multiple benefits as it provide ophthalmologists visual justi-
fications for the model’s predictions, making it more effective for
assisting medical diagnosis by human doctors.

Therefore, Figure 7 indicates that the CNN architecture of ResNet50
is better at extracting small features. Especially with ResNet allow-
ing the layers to be much deeper than other CNNs by eliminating
the vanishing gradient problem, it is clear that ResNet50 was better
at identifying small indicators of glaucoma than ViT. Future work
could involve validating Grad-CAM visualizations with expert an-
notations to confirm alignment with clinical markers of glaucoma.

5.4 Limitations and Future Directions
Despite utilizing a significantly larger dataset (total: 10004 after
oversampling) with various augmentation methods to increase the
size further, ViT’s performance plateaued after Epoch 3, suggest-
ing that the model may require even larger datasets or different
augmentation strategies to fully converge and reach its potential.
Future studies could explore training ViT on substantially bigger
private datasets from multiple institutions or using synthetic data
augmentations.

In addition, classifying glaucoma as binary oversimplifies the
real-world problem of diagnosing glaucoma as it can be at different
stages or conditions, requiring more elaboration than just binary
prediction. Hence, developing multi-classification datasets for glau-
coma detection could be crucial for identifying nuanced progression
of the disease.

Future works should also investigate modifying the ViT archi-
tecture such as hybrid CNN-Transformer models that can capture
both local and global images.

6 Conclusions
This study develops and evaluates the model performance and com-
putational efficiency of ResNet50 and Vision Transformer for detect-
ing glaucoma from fundus photographs. With a publicly available
dataset, we fine-tuned both models by leveraging transfer learning
with a small learning rate (0.0001) on pre-trained layers.

For diagnostic performances, ResNet50 achieved a 90.72% ac-
curacy for the final epoch with F1 score of 0.8614. Although ViT
also had strong performance with 87.64% accuracy and 0.8614 F1,
ResNet50 exceeded ViT in performance metrics with 3.08% higher

accuracy and 0.049 higher F1. Furthermore, in terms of computa-
tional efficiency, ResNet50 was 68.48% faster at making inferences
and predicted 217.31% more images/second while using 50.52%
less GPU, outperforming ViT also in the computational metrics.
These findings highlight the suitability of ResNet50 over ViT for
use in resource-constrained medical settings, where both reliability
and efficiency are crucial, to assist ophthalmologists in diagnosing
patients.

7 Acknowledgement
I would like to express my deepest thanks to Ms. Catherine Robin-
son for her guidance and support throughout the research. Her
insights and feedback were greatly appreciated and helped me stay
on track during key stages of my work.

References
[1] Francisco José Fumero Batista, Tinguaro Diaz-Aleman, Jose Sigut, Silvia Alayon,

Rafael Arnay, and Denisse Angel-Pereira. 2020. RIM-ONE DL: A Unified Retinal
Image Database for Assessing Glaucoma Using Deep Learning. Image Analysis
and Stereology 39, 3 (2020), 161–167. https://doi.org/10.5566/ias.2346

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint
arXiv:2010.11929 (June 2021). https://doi.org/10.48550/arXiv.2010.11929 ICLR
camera-ready version.

[3] Gabriel García, Rocío del Amor, Adrián Colomer, and Valery Naranjo. 2020.
Glaucoma Detection From Raw Circumpapillary OCT Images Using Fully Convo-
lutional Neural Networks. In Proceedings of the 2020 IEEE International Conference
on Image Processing (ICIP) (Abu Dhabi, United Arab Emirates). IEEE, 2526–2530.
https://doi.org/10.1109/ICIP40778.2020.9190916

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv preprint arXiv:1512.03385 (December
2015). https://doi.org/10.48550/arXiv.1512.03385 Tech report.

[5] Elizabeth E. Hwang, Dake Chen, Ying Han, Lin Jia, and Jing Shan. 2023. Multi-
Dataset Comparison of Vision Transformers and Convolutional Neural Net-
works for Detecting Glaucomatous Optic Neuropathy from Fundus Photographs.
Bioengineering (Basel) 10, 11 (October 2023), 1266. https://doi.org/10.3390/
bioengineering10111266

[6] Shajila BeegamM. K. and Mala Kalra. 2024. Leveraging CNN and Fundus Imaging
for Enhanced Glaucoma Detection. SN Computer Science 5, 1 (2024), Article 1137.
https://doi.org/10.1007/s42979-024-03527-4

[7] Mona Kaleem. n.d.. Glaucoma. [Online]. Available: https://www.hopkinsmedicine.
org/health/conditions-and-diseases/glaucoma. Johns Hopkins Medicine. [Ac-
cessed: 2024-12-00].

[8] Ashish Kulkarni and H. Shafeeq Ahmed. 2024. A Comparative Study on Deep
Convolutional Neural Networks and Histogram Equalization Techniques for
Glaucoma Detection From Fundus Images. medRxiv (October 2024). https:
//doi.org/10.1101/2024.10.25.24316109

[9] Jordan Mandell, Benjamin Lin, and Ann Quan. 2024. Evaluating the cup and
disc in glaucoma. https://eyeguru.org/blog/evaluating-cup-and-disc/ Accessed:
2024-12-01.

[10] Maxat Nurgazin and Nguyen Anh Tu. 2023. A Comparative Study of Vision
Transformer Encoders and Few-shot Learning for Medical Image Classification.
In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision
Workshops (ICCVW) (Paris, France). IEEE, 2505–2513. https://doi.org/10.1109/
ICCVW60793.2023.00265

[11] Ayush Roy. 2023. Glaucoma Classification Datasets: DRISHTI-GS, RIM-ONE,
ACRIMA, ORIGA, and G1020. https://www.kaggle.com/datasets/ayush02102001/
glaucoma-classification-datasets?resource=download Accessed: 2024-01-01.

[12] Srinivas Rahul Sapireddy. 2023. ResNet-50: Introduction. https://srsapireddy.
medium.com/resnet-50-introduction-b5435fdba66f Accessed: 2024-12-00.

[13] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2019. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. International Journal of Com-
puter Vision 128, 2 (2019), 336–359. https://doi.org/10.1007/s11263-019-01228-7

[14] Yiqiu Shen, Nan Wu, Jason Phang, and Jungkyu Park. 2020. An interpretable
classifier for high-resolution breast cancer screening images utilizing weakly
supervised localization. arXiv preprint arXiv:2002.07613 (February 2020). https:
//doi.org/10.48550/arXiv.2002.07613

7

https://doi.org/10.5566/ias.2346
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/ICIP40778.2020.9190916
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.3390/bioengineering10111266
https://doi.org/10.3390/bioengineering10111266
https://doi.org/10.1007/s42979-024-03527-4
https://www.hopkinsmedicine.org/health/conditions-and-diseases/glaucoma
https://www.hopkinsmedicine.org/health/conditions-and-diseases/glaucoma
https://doi.org/10.1101/2024.10.25.24316109
https://doi.org/10.1101/2024.10.25.24316109
https://eyeguru.org/blog/evaluating-cup-and-disc/
https://doi.org/10.1109/ICCVW60793.2023.00265
https://doi.org/10.1109/ICCVW60793.2023.00265
https://www.kaggle.com/datasets/ayush02102001/glaucoma-classification-datasets?resource=download
https://www.kaggle.com/datasets/ayush02102001/glaucoma-classification-datasets?resource=download
https://srsapireddy.medium.com/resnet-50-introduction-b5435fdba66f
https://srsapireddy.medium.com/resnet-50-introduction-b5435fdba66f
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.48550/arXiv.2002.07613
https://doi.org/10.48550/arXiv.2002.07613


IJSCAR VOL. 2, ISSUE 1, April, 2025, NY, NY Eric Hwang

[15] Torchvision Contributors. 2023. torchvision.models.resnet50. https://pytorch.org/
vision/main/models/generated/torchvision.models.resnet50.html

[16] Torchvision Contributors. 2023. torchvision.models.vit_b_16. https://pytorch.org/
vision/main/models/generated/torchvision.models.vit_b_16.html

Received 01 January 2025; accepted 27 March 2025

8

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vit_b_16.html


Co-occurrence of Extreme Heat and Pollution in the Southwest
United States

Arjun Maganti
arjunmaganti2008@gmail.com
Basis Independent Silicon Valley

San Jose, California, USA

Zachary Espinosa
zespinosa97@gmail.com
University of Washington
Seattle, Washington, USA

ABSTRACT
In this research paper we examine the co-occurrence of extreme
heat and humidity in the Southwest United States between 2003
and 2023. Using simple statistical regression analysis, time series
analysis, and spatial compositing, we demonstrate that humidity,
when coinciding with extreme heat, tends to exacerbate air pollu-
tion. Specifically, we find that humidity and heat have the largest
impact of PM d <2.5µm and carbon monoxide (CO) with a lesser
impact on other pollutants. We hypothesize the hygroscopic nature
of PM2.5 particles and the reactive CO molecules with NOx and
VOC compounds lead to amplified reaction rates during extreme
heat and humidity. Next, we examine the meteorological conditions
associated with the co-occurrence of extreme heat and humidity
in Los Angeles and Sacramento. We demonstrate that heat waves
in Los Angeles are associated with strong northwesterly winds,
originating in the Mojave Desert, that are associated with anoma-
lous warm atmospheric heat transport. This is also associated with
decreased on-shore winds from the Pacific Ocean, which typically
have a cooling effect. Decreased onshore winds resultantly lead to
an exacerbation of heat conditions. These findings can contribute
to further prevention of possible wildfire events caused by extreme
heat conditions, and also lead to further protections against cases
of extreme pollution in the southwestern United States.
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co-occurrence of extreme heat and pollution, climate change, South-
west United States, compound events, air pollution
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1 INTRODUCTION AND RELATEDWORK
The southwestern United States is known for an abundance of
wildfires ranging from man-made camping accidents to large scale
forest fires. Despite decades of research, there is still much to im-
prove in our understanding and preparation for wildfires. One
particular area of research that requires further exploration is the
co-occurrence of extremes events. For example, many fires, such
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as the Dixie and August Complex fires, co-occur during significant
heat waves. Recent scientific study has shown that the frequency of
co-occurring extreme heat, wildfires, and air pollution will increase
due to anthropogenic global warming [1] [10] [11]. Here, we focus
on examining the impact of co-occuring extreme temperature and
humidity on air pollution.

There are several decades worth of literature examining the
physical drivers and impacts of heat waves. Extreme heat can have
profound negative impacts on human society, including affecting
economic productivity, human mortality, and agricultural yield.
These have shown that the frequency and intensity of extreme
heat will increase due to global warming from the anthropogenic
emission of greenhouse gases. Such studies have been conducted
documenting all continents and parts of the globe, confirming that
these effects have global consequences [4] [12]. These studies pro-
vide valuable insight into the long term effects that heat waves
have on the environments of places rather than just the effects they
have on humans.

Similar to extreme heat, air pollution has been shown to be ex-
acerbated by anthropogenic emissions of greenhouse gases and
other pollutants. A study by Schnell et al. 2017 [12] analyzed co-
occurrences of extreme temperature, surface ozone, and particulate
matter over the eastern United States. The study concluded that tem-
perature was a key factor to the increased levels of ozone and PM2.5
in the atmosphere. Pollution levels have also increased in countries
such as the United States, Portugal, and the United Kingdom [11]
[8]. Pollution is a human health risk and can impact respiratory
and cardiac-associated mortality. As a result, examining the co-
occurrence of extreme heat and pollution can have implications in
health research as well [2].

As such, our research looks to further this goal by analyzing the
impact of humidity on the co-occurrence of extreme heat and air
pollution in the southwest United States. By analyzing the effect
of heat and humidity on the anomalous occurrence of pollutants,
we use a composite map analysis to understand the difference in
pollutant occurrence over the western United States during humid
and dry heat waves. We also use a time series analysis to perform
a case-study of several historical extreme heat events. The aim of
this study is to improve our understanding of how pollution differs
between dry heat waves and humid heat waves in the Southern
western United States.

2 METHODOLOGY
2.1 Dataset
This study uses the CAMS (Copernicus Atmosphere Monitoring
Service) global reanalysis dataset, which provides comprehensive
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information about atmospheric composition, including tempera-
ture, humidity, and pollutants. CAMS is widely recognized in the
field of atmospheric science for its high-resolution global data and
assimilation of satellite observations. It was selected for its reliabil-
ity, accessibility, and relevance to studying heatwave and pollution
interactions.

We downloaded data from the CAMS global reanalysis dataset,
covering January 1, 2003, through December 31, 2023. The spatial
domain spans latitudes 32°N to 42°N and longitudes 114°W to 124°W,
with each grid point spaced 0.7 degrees apart in both latitude and
longitude. For each grid point and time step, the following variables
were collected:

• Vector wind speeds (u10 and v10).
• 2-meter temperature (t2m).
• Mean sea level pressure (msl).
• Concentrations of particulate matter with diameter <2.5 𝜇m
(pm2p5).

• Total column concentrations of carbon monoxide (tcco),
methane (tc_ch4), nitrogen dioxide (tcno2), and ozone (gtco3).

• Total column water vapor (tcwv).
This produced a 3-dimensional dataset, structured with x and

y coordinates for spatial positions, variable values for each of the
chosen parameters, and a z-axis representing dates from 2003 to
2023. All variables were numerical, allowing for comprehensive
statistical and graphical analyses. The NetCDF (nc) dataset was
converted into a pandas DataFrame for efficient manipulation and
visualization.

Table 1: List of CAMS variables and their abbreviations used
in the study.

Name Abbreviation
10-meter U wind component u10
10-meter V wind component v10

2 meter temperature t2m
Mean sea level pressure msl

Particulate matter d ≤ 2.5 𝜇m pm2p5
Total column carbon monoxide tcco

Total column methane tc_ch4
Total column Nitrogen Dioxide tcno2
GEMS Total Column Ozone gtco3

Total column vertically-integrated water vapor tcwv

2.2 Preprocessing
Firstly, the preprocessing stage involved narrowing down the dataset
to focus on relevant parameters, specifically anomalies in tempera-
ture and humidity during the months of May through September.
The goal was to identify patterns in heatwaves and humidity, par-
ticularly during summer months leading into wildfire season. We
use the 95th percentile of 2-meter temperature values during the
months of May, June, July, August, and September to extract heat
waves from our data set. The purpose of this specifically is to extract
the warmest days possible across the time period, and to specifically
extract summer days leading into wildfire season as these days have
the most relevance to overall pollution values. Similarly, we use

the 90th percentile of water vapor during these same months to
find the set of most humid days during this timespan. This process
creates two datasets consisting of the 95th percentile of 2-meter
temperature values for a location, and the 90th percentile of total
column water vapor values for that same location. Intersecting the
two sets gives us one combined dataset of the most hot and humid
days for a specific x and y grid point.

2.3 Methods
Most formal research done in this topic uses a combination of math-
ematical models or neural network models to effectively predict
such cooccurrences. These studies are out of the scope for this pa-
per. Due to this, our paper will use a combination of two methods:
time series analysis and composite map analysis.

Time series analysis is used to investigate the temporal relation-
ship between heat waves, humid events, and pollutant levels. For
this, anomalies in temperature and humidity were extracted for
specific heat wave and humid wave events within a 10-day frame.
Temperature or humidity served as causation variables, which were
plotted on individual axes. Concurrently, pollutant levels, such as
particulate matter (PM2.5) or total column ozone, were plotted on
a dual y-axis within the same graph. This dual y-axis approach
creates overlapping line charts, where one line represents temper-
ature or humidity, and the other line represents the pollutant of
interest. This visualization effectively highlights the temporal corre-
lation and potential lead-lag relationships between these variables.
Such analysis provides a detailed understanding of how individ-
ual heatwave or humid wave events impact pollutant levels in the
atmosphere across the selected geographic region.

Composite map analysis was performed using the Cartopy li-
brary in Python to explore the spatial dynamics of atmospheric vari-
ables during heatwave and humid wave events. By mapping wind
vectors, pressure gradients, and gradients of other atmospheric
variables, we generated averaged maps that provide a comprehen-
sive snapshot of the meteorological and atmospheric conditions
during these events. Additionally, difference maps were created to
isolate the effects of humidity during heatwaves. By calculating
the differences in atmospheric conditions between hot days and
humid-hot days, we were able to further investigate the influence of
humidity on pollutant levels, such as ozone and particulate matter,
during extreme weather events. These spatial analyses allow us to
examine not only the localized effects of heatwaves and humidity
but also broader patterns that may emerge across the study region.

3 RESULTS
3.1 Composite Map Analysis
The composite map analyses are presented in Figures 1–12. Figures
1–6 focus on Los Angeles, while Figures 7–12 highlight Sacramento.
Each figure consists of three panels:

(1) The left panel represents the variable’s average anomaly
during hot days (95th percentile of t2m).

(2) The middle panel shows the anomaly during hot and humid
days (95th percentile of t2m and 90th percentile of tcwv).

(3) The right panel illustrates the difference between the hot
and humid day anomalies and the hot day anomalies.
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Figures 1–6 display the behavior of six atmospheric variables
in Los Angeles during anomalous events: 2-meter temperature
(t2m), particulate matter (PM2.5), carbonmonoxide (tcco), methane
(tc_ch4), nitrogen dioxide (tcno2), and ozone (gtco3).

Los Angeles, California (34.05 N, 118.25 W)

Figure 1: 2-meter temperature

Figure 2: Particulate Matter d < 2.5µm

Figure 3: Total Column Carbon Monoxide

Figure 4: Total Column Methane

Figure 5: Total Column Nitrogen Dioxide

Figure 6: Total Column Ozone

In Los Angeles, composite map analyses reveal notable patterns
for the six atmospheric variables during anomalous events. The
2-meter temperature (t2m, Figure 1) shows minimal differences
between hot and hot-humid days, as the anomalies are inherently
tied to the hot-day criteria, with slightly lower values on humid
days due to stricter filtering. Particulate matter (PM2.5, Figure 2)
exhibits significant positive anomalies on humid days, with wide-
spread increases across the western portion of the state and the
Central Valley, compared to the more localized anomalies near Or-
ange County and San Diego on hot days. Carbon monoxide (Figure
3) displays substantially higher anomalies on humid days, with
positive differences observed across the region except for inland
desert areas, which remain largely unaffected. Methane (Figure 4)
anomalies are generally small but consistently positive, with hot
days contributing to markedly elevated levels compared to average
conditions. Nitrogen dioxide (Figure 5) presents a more complex
trend: hot days show negative anomalies near Los Angeles, whereas
humid days result in significant positive anomalies extending north
through the San Francisco Bay Area and Central Valley, as captured
in the difference map. Lastly, ozone (Figure 6) is the only variable
negatively correlated with heat, with hot days resulting in reduced
ozone levels. However, humid days mitigate this reduction, leading
to less pronounced negative anomalies and slightly higher ozone
levels than on hot days alone.
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Sacramento, California (38.58 N, 121.50 W)

Figure 7: 2-meter temperature

Figure 8: Particulate Matter d < 2.5µm

Figure 9: Total Column Carbon Monoxide

Figure 10: Total Column Methane

Figure 11: Total Column Nitrogen Dioxide

Figure 12: Total Column Ozone

In Sacramento, the trends in composite map analyses largely
align with those observed in Los Angeles, with some regional dis-
tinctions due to its inland location. Temperature anomalies (t2m,
Figure 7) show negligible differences between hot and hot-humid
days. Particulate matter (PM2.5, Figure 8) demonstrates a similar
trend to Los Angeles, with significantly higher anomalies on hu-
mid days, particularly across the Central Valley and surrounding
regions. Carbon monoxide (Figure 9) anomalies in Sacramento are
smaller on humid days compared to Los Angeles at the center of
axis, reflecting its inland position, but still show positive differences,
indicating the influence of humidity. Methane (Figure 10) follows
the same pattern as in Los Angeles, with modest positive differences
and elevated anomalies on hot days. Nitrogen dioxide (Figure 11)
anomalies differ slightly, as coastal areas show negative differences,
while inland areas, including Sacramento and regions to the north
and east, exhibit positive differences on humid days, compared to
Los Angeles which still exhibits negative anomalies. Ozone (Figure
12) trends are consistent with Los Angeles, with lower anomalies
on hot days and less pronounced negative anomalies on humid
days, suggesting a similar mitigating effect of humidity on ozone
reductions caused by heat.
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3.2 Time Series Analysis

To further investigate the lead-lag relationship between tempera-
ture and pollutants, specific examples provide valuable insights. Fig-
ures 13.1 and 13.2 illustrate two notable heatwaves: the September
2022 heatwave in Los Angeles and the July 2007 heatwave in Sacra-
mento. Both events exhibit significant temperature anomalies, with
peak temperature variations ranging from 7 to 9°C (approximately
14 to 16°F) above typical values. A clear correlation is observed
with particulate matter (PM2.5), as PM2.5 concentrations surge ap-
proximately 2 to 3 days following the peak of the heatwaves. These
instances are representative of common heatwave patterns, and
by aggregating multiple cases, we identify a general trend linking
temperature anomalies to pollutant fluctuations. Although natu-
ral variation in PM2.5 and other pollutants exists, these examples
demonstrate that substantial heat anomalies play a significant role
in shaping pollutant levels, thus providing a clearer understanding
of their dynamic relationship.

4 DISCUSSION
Humidity’s variability has significant impacts on multiple pollu-
tants as discussed in the Los Angeles and Sacramento examples.
The factors influencing specific variables’ variations result from
unique, but linked chemical processes that occur in the atmosphere.
As such, each variable must be studied individually to examine the
nature of our results.

4.1 PM2.5
In the instance of PM2.5, the size is the key factor why it is signif-
icantly higher on humid days. Hygroscopy is a process where a
particle readily bonds with other particles around it without assis-
tance of added pressure, heat, or circulation. PM2.5 particles are
naturally very hygroscopic, and bond with the increased water
vapor in the atmosphere, thus leading to larger PM2.5 molecules.
These are detected as higher values by montoring equipment [2].
Similarly, aerosols, small bundles of solids and liquids suspended
in the air, tend to increase during humid events. Thus, previously
non PM2.5 matter can be converted into matter that is detected and
classified as PM2.5, thus increasing its detections.

4.2 Carbon Monoxide
Carbon monoxide also showed a significant increase on humid days.
The main attributing factor is the way this variable was measured.
The full name of the variable is total column carbon monoxide,
which refers to the total amount of carbon monoxide present in

a specific vertical shaft of the atmosphere from the ground to the
top of the atmosphere. As a result, mixing within a column is not a
viable explanation, although humidity does often lead to thermal
inversions that would allow for restrained columnmixing. Instead, a
viable explanation could be the low rates of oxidation. CO typically
reacts with hydroxyl radicals (OH) in the atmosphere which allows
its concentration to disperse over time. Water vapor, however, is a
reacting agent that can exacerbate this process, resulting in larger
CO values. Similarly, CO is a common byproduct of many other
pollutants’ reactions, like Volatile Organic Compounds (VOCs) and
Nitric Oxide compounds (NOx) [14] [6].

4.3 Methane
Methane has much smaller, but still positive anomalies on humid
days than hot days. Similar to CO, the measurement of methane is
throughout the total atmospheric column, eliminating mixing and
the elevation of a measurement from a factor. Consequently, the
lack of dispersion of methane is attributed to a variety of factors.
Heat waves are generally associated with high pressure systems,
and moist air can trap methane in stagnant air masses, causing
its measurements to increase on humid days. As well as this, simi-
lar NOx and VOC reactions can cause methane not to react with
hydroxyl groups as much as they would on a hot, dry day due to
the introduction of water vapor [5]. In a similar case to carbon
monoxide, methane would increase, but not at the same rate due
to its reactions tending to be slightly less frequent. A more bio-
logical explanation is also plausible. Humidity can sometimes lead
to increased moss, fungi, and plants grown in soil, contributing
to the flow of groundwater and reservoirs. This water can lead to
methane-producing bacteria that also contribute, although on a
smaller scale, to methane in the atmosphere.

4.4 Nitrogen Dioxie
Nitrogen dioxide (NO2) shows a negative correlation with humidity
in the center of axis for Los Angeles, but not for Sacramento. The
negative correlation is due to the transformation of NO2 into a
different compound, nitric acid (HNO3). In the atmosphere, NO2 re-
acts with hydroxyl (OH) molecules to form nitric acid, and elevated
humidity levels act as a key catalyst in this reaction. As a result,
this essentially drains most NO2 from the atmosphere. Nitrogen
dioxide is also part of the NOx family of gases, and this reduction in
gases can also lead to the exacerbating effects of carbon monoxide
and methane in the atmosphere. In contrast, the positive anomalies
observed in Sacramento can be attributed to the influence of lo-
cal atmospheric conditions, such as lower humidity levels and the
proximity of the regio to agricultural areas, which can contribute
to increased NO2 emissions.

4.5 Ozone
Although ozone has a large difference between humid heat and
dry heat, all composited anomalies are negative. Ozone negatively
correlates with heat. Ozone is typically associated with nitrogen
dioxide, which means that NO2 and O3 reactions are used to regen-
erate NO and oxygen gas, leading to the reduction of both gases.
This is known as the NO2-O3 equilibrium shift [6]. Despite this,
the increase in ozone is evident. A plausible explanation for this
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circumstance is that increased water vapor plays a role in this re-
action. Water vapor can cause the formation of peroxy radicals
(RO2) along with typical oxygen gas. As a result, atomic oxygen
can combine with the oxides in these radicals to reform O3, thereby
regenerating it at the expense of nitrogen dioxide, which is not
regenerated at the same rate.

5 CONCLUSION AND LIMITATIONS
5.1 Summary
In this paper we examined the co-occurrence of extreme heat and
humidity in the Southwest United States between 2003-01-01 and
2023-12-31. We use a combination of simple statistical regression
analysis, time series analysis, and spatial compositing to demon-
strate that humidity, when coinciding with extreme heat, tends to
exacerbate air pollution. Specifically, we find that humidity and
heat have the largest impact of PM d <2.5µm and carbon monox-
ide (CO), with a lesser, but still significant impact on ozone (O3),
nitrogen dioxide (NO2), and methane (CH4). We hypothesize that
humidity has a larger impact of CO and PM2.5 because the hygro-
scopic nature of PM2.5 particles and the reactive COmolecules with
NOx and VOC compounds lead to exacerbated results especially in
extreme heat and humidity. Additionally, we examine the meteo-
rological conditions associated with the co-occurrence of extreme
heat and humidity in Los Angeles and Sacramento. We demonstrate
that heat waves in Los Angeles are associated with strong north-
westerly winds, originating in the Mojave Desert, and anomalous
warm atmospheric heat transport due to large pressure gradients
between said areas. This is also associated with decreased on-shore
winds from the Pacific Ocean, which typically have a cooling effect,
but are non-present in these situations due to the reversal of the
winds. Similar studies have been conducted for other regions of the
globe [3], however, to the best of our knowledge, this is the first
study systematically examining the co-occurrence of extreme heat,
humidity, and pollution in the Southwestern United States.

5.2 Limitations
There are several limitations to this study and avenues for additional
analysis. First, we do not examine the robustness of our heatwave
definition. We define heatwaves using a 1-day exceedance of the his-
torical 95th percentile of 2-meter temperature. While this quantile-
based measurement of heatwaves is standard in past studies, most
studies require that this occurs for 3 or more consecutive days. The
definition used here simplifies the complexity of heatwaves and
overlooks multi-day thresholds that are more robust. If given addi-
tional time, we would explore the robustness of our results using
various heatwave definitions from other studies. Second, we would
like to more thoroughly examine the meteorological conditions
associated with the co-occurrence of extreme heat, humidity, and
pollution. For example, we may investigate the impact of regions
with climatological inversions (e.g., the Central Valley of California
and Los Angeles) and compare rural versus urban centers. Finally,
we do not control for the impact of wildfires, which may influence
the results of this study. Wildfires can both trigger heatwaves and
be exacerbated by them, and while humidity can play a role, it
is unlikely to be the only contributing factor. The significance of
humidity relative to other factors cannot be fully determined in

this study. Further research should isolate the independent effects
of various factors, including wildfires, to increase the robustness
and accuracy of studies on this topic.
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Abstract
Drift is one of the most unpredictable challenges when operating
nano-quadcopters like Crazyflie. Caused by various factors includ-
ing propeller orientation, battery positioning, and hardware man-
ufacturing variations-drift significantly impacts flight predictabil-
ity, particularly in tight spaces such as narrow hallways, crowded
rooms, and public areas. While a permanent solution to drift may
not exist—especially when it arises from inherent hardware varia-
tions such as mechanical inconsistencies and alignment inaccura-
cies—understanding its effects is crucial for flight precision, safety,
and the mitigation of unintended flight path deviations. Moreover,
drift analysis is essential in environments lacking precise posi-
tioning systems. Addressing drift directly within flight operations
provides a more effective and broadly applicable solution to this
mechanically induced issue. In this case study, we examined the typ-
ical drift patterns observed in Crazyflie quadcopters, assessing their
scale and comparing differences across model versions. This analy-
sis can help researchers determine whether these drones offer the
precision required for their applications or if additional stabilization
measures, such as a lower-level Proportional-Integral-Derivative
(PID) controller, are necessary.
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1 Introduction
Drift is a critical factor in all aspects of flight, as its impact on
trajectory can compromise safety and precision. In our study, we
focused on mitigating hardware- and mechanically-induced drift
in the Crazyflie quadcopter series from Bitcraze—an issue possibly
stemming from slight imperfections in the drone’s construction.
Though seemingly minor, such variations can lead to unintended
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deviations, increasing the risk of collisions with surrounding obsta-
cles. As we advance toward autonomous drone operation, refining
even the smallest flight details is essential to achieving an optimally
designed drone. An ideal build could potentially eliminate drift, but
it is very difficult to achieve. Since drift is undeniable, minimizing
it is crucial for maintaining a drone’s structural integrity and en-
suring it can reliably complete tasks without sustaining damage.
This would enable precise navigation through tight spaces, where
accuracy is vital for the drone’s operation. In summary, the key
contributions of our work are:

(1) Graphing data from logger module vs. manually measured
drift data to determine whether the logger module provided
by Bitcraze is capable of generating accurate location data.
The logger data proved to be quite erratic and often incorrect,
and drift was undeniably visible in all models of the Crazyflie.

(2) Cross-evaluating model performance with Crazyflie 2.1+.
This model performed better than Crazyflie 2.1 model in
terms of drift but certainly showed its significant presence
affecting all aspects of flight.

(3) Validating whether having a patterned floor would affect
the quadcopter’s optical position analysis module perform
better, thereby reducing drift. The experiment did not yield
a positive outcome.

2 Related Work
Although drift is essential in all forms of aerial flight, there is mini-
mal research available on drift analysis and its implications on a
quadcopters. A significant and manually created drift is explored
in [5]. By cutting the propellers and analyzing the effects this had
on the drone, the authors were able to better understand the signif-
icance of drift on a quadcopter. Another work, [6], related to drone
drift in fact argues that the concept is often negligible. Built-in
and pre-implemented flight algorithms were utilized to reduce the
effect of drift in this paper. The paper mentions the use of IMUs
(Inertial Measurement Units) when conducting short flight exper-
iments where drift is insignificant. However, in situations where
mechanical drift is high, the simple use of an IMU is problematic.

Nano-Unmanned Aerial Vehicles (UAVs) have the potential to
be one of the most useful forms of autonomous drones. Whether
they are used for traffic patrolling, hallway monitoring, or other
purposes, they can play a significant role in shaping the future.
However, their creation is not simple. Many challenges, such as
memory problems and their short lifetimes, pose difficulties. In [7],
the use of the Parallel Ultra-Low Power Shield (PULP-Shield) as well
as the convolutional neural network, PULP-DroNet, is able to both
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calculate the steering angle of the drone as well as the drone’s crash
probability, resulting in a functional automated nano-quadcopter.

This drone was created by adding a PULP-Shield on top of the
Crazyflie 2.0’s body. The PULP-Shield consists of a PULP-GAP8
processor, composed of a fabric controller and a cluster, as well
as other parts. A fabric controller is similar to a microprocessor,
and the cluster is used to accelerate parallel code running on the
processor. The PULP-Shield’s use is mainly related to input filtra-
tion. The image stream coming from the camera is offloaded to
the Crazyflie’s hardware, where the drone’s microcontroller unit
(MCU) then offloads much of the intensive visual navigation work-
load to the PULP accelerator. This filtered input is then sent to the
PULP-DroNet model.

Although this automated nano-quadcopter is functional, it still
lacks the necessary robustness needed for real-life application. As
seen in the video provided in the paper, the drone is unable to
keep a straight and steady path, moving at a slow pace of 1.5 m/s
while maintaining a height of 0.5 m/s. Furthermore, the PULP-
DroNet model is trained on an outdoor dataset, making it difficult to
perform with environmental variations. In our work, we addressed
this challenge by performing our experiments in an enclosed garage
space.

When regarding all forms of aerial flight, flight precision can-
not be trivialized. A high precision model could save battery life,
increase efficiency, and reduce crash hazard. When regarding work
similar to that conducted by ETH Zurich [7], drift analysis can be
essential to further progress in this space. Positioning alternatives,
although feasible as possible solutions, are both less effective and
unreasonable in the context of experimental flight. Drone drift anal-
ysis when utilized effectively reduces flight risks. Moreover, in the
new domain of swarm flight [2, 4, 8], drone drift could potentially
create accidents between drones. If a quadcopter veers off its flight
path, it could easily collide with other neighboring drones, leading
to crashes.

A potential solution to drift mitigation is seen within the context
of runtime monitoring, a technique often used to detect threats to
a system. As demonstrated in [1] this research domain has huge
potential in drone autonomy and flight enhancement. The authors
used RTLola, a stream-based specification language that helped
develop a dynamic monitoring framework for the DLR ARTIS (Au-
tonomous Robotics and Technology for Intelligent Systems), a UAV.
RTLola is both an expressive and reliable specification language,
meaning it is able to analyze the health status of a UAV during
flight. The use of the specification language was heavily present in
the work demonstrated, helping UAVs on reconnaissance missions.
Based on real-time data analysis, a UAV would make decisions cen-
tered on ensuring its safety. The aforementioned details of RTLola
can possibly be utilized for direct drift correction. The safety vali-
dation system can be changed to prevent excessive displacement
from the flight path. These technologies are essential to alert the
system of any errors so it can correct itself.

3 Hardware Stack
The Crazyflie 2.1/2.1+ is built from a variety of different micro-

processors and chips in order to create a lightweight and prototype-
friendly nano-quadcopter. The essential components in use for our

Figure 1: Enclosed garage setup to minimize environmental
factors

work were part of Bitcraze’s Flow Deck V2. The navigation sensor
is composed of two main components: the VL53L1x ToF sensor and
the PMW3901 optical flow sensor. The former is used for precise
measurement in the drone’s upwards movement (traditional, ’+z’
axis) while the latter measures movement relative to the ground.
The sensor calculates the change in pixels between frames. We col-
lected data from flight trials on both the Crazyflie 2.1 and Crazyflie
2.1+ models in order to analyze drift. Some of the data we were
able to collect also allowed us to help determine the performance
capability of the optical flow sensor under specific conditions, an-
alyzing whether a patterned or netural floor would improve the
sensor’s estimations.
4 Methodology
To collect sufficient data to prove drift variability, we conducted
a series of five different styles of flight experiments (in-place, for-
ward, backward, rightward, and leftward) as shown in Fig. 2 using
two different drone models: Crazyflie 2.1+ and Crazyflie 2.1. We
used Crazyflie 2.1+, one of Bitcraze’s latest releases, as our base
model. The lightweight drone was assembled with the Flow Deck
v2 attached to its underside. This deck helped the drone understand
its location and generate coordinates. We used these coordinates to
calculate the net drift of the drone during flight and used Crazyflie’s
motion commander (’mc’) module for command and control.

Drift measurements were performed in an enclosed garage to
minimize the effect of environmental factors such as wind and
erratic air currents and external temperature variations, as shown
in Fig. 1. In all our experiments, we measured between two points,
a take-off and a landing point. Ideally, with zero drift, these two
points should coincide for in-place (hover) flights and should follow
perfect grid geometry for right and left lateral flights and forward
and backward flights. We kept a distance of two meters between
the takeoff and the ideal landing points in each of the four flight
types, as depicted in Fig. 2.

To calculate the net drift caused by the flight, we measured the
displacements ’x’ and ’y’ from the takeoff location to the landing
position. While we performed manual measurements, the Bitcraze
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Figure 2: Five different drone flights - ideal vs actual

logger module would also record its own interpretations of drift.
We used three essential log variables:
state.position.x, state.position.y, state.position.z

from the Bitcraze position framework to record the drone’s location
coordinates. This was later used to calculate drift from the logger
module. We faced a challenge matching the coordinate axes be-
tween Bitcraze’s logger system axes convention and the traditional
coordinate axes used in our manual measurements. Our traditional
coordinate system assumed the drone’s front/nose aligned with the
positive ’y’ direction. The Bitcraze logger system differed from this
convention by using unconventional axes as: right (traditional ’+x’
axis) −→ ’-y’ axis, forward (traditional ’+y’ axis) −→ ’+x’ axis, left
(traditional ’-x’ axis) −→ ’+y’ axis, backward (traditional ’-y’ axis) −→
’-x’ axis. We later adjusted the data to conform to our interpretation
of a logical and traditional axes system.

We divided the flight into two categories, in-place flight and
path-based flight. The in-place flight involved a simple movement:
mc.up(1.5, velocity=1.5)

This would elevate the drone 1.5 meters upward (traditional ’+z’
axis), hover for 10 seconds, and then descend. In the path-based
flight, we measured drift variability while the Crazyflie was in
motion across four different simple paths - lateral left, lateral right,
forward, and backward. We positioned the drone to be oriented
such that its direction of flight would lead it to its ideal landing spot
(ex: for forward flight, we placed the drone with its nose facing

forward). We followed the same flight motion as the in-place flight,
raising the drone to a height of 1.5 meters, where it would hover
for 3 seconds. Then we would use Bitcraze’s motion commander
module to fly the drone two meters in the path direction (left, right,
forward, backward). The quadcopter would then finally descend.

In total, we conducted 50 drift variability tests of in-place flight
using the Crazyflie 2.1+model and 25 tests for each category of path-
based flights: forward, backward, rightward, and leftward. We also
performed 40 in-place flight drift variability tests on the Crazyflie 2.1
model that helped us compare the variability between models and
conclude that the drift variability is undeniable and real. There was
no set guidance behind choosing the 50 and 40 iteration numbers.
To balance human time and effort spent conducting suchmeticulous
experiments andmeasurements, we used our engineering discretion
to finalize the test iteration numbers that we considered reasonable
to help us empirically conclude drift variability.

Moreover, we performed an additional 25 in-place flight runs to
test the impact of propeller replacement on drift. We swapped the
pair of propellers, which came with the Crazyflie 2.1 bundle, with
replacement propeller parts.

Lastly, we conducted tests to prove that a checkered pattern
on the floor would not affect the perception of movement by the
PMW3901 optical flow sensor, an integral part of the Crazyflie flow
deck module. We created a nonuniform grid pattern on the floor
and performed a series of 10 in-place flight tests.

5 Results
5.1 Graphical Interpretation
The results of our collected data were represented in three differ-
ent ways (see Fig. 6 - Fig 13). The (a) graphs for each mini-dataset
composed of a scatter plot of both the logger and manually inter-
preted data. Points relating to the same data are connected in the
graph. The (b) and (c) graphs represent a running average plot
with the blue graph displaying the x-drift while the orange graph
indicating the y-drift. The (b) graphs represented the trend lines for
the data collected by the logger, while the (c) graphs represented
manually collected data. The inability for the trend lines to plateau
emphasizes the presence of inherent variability in drift.

All outliers in our dataset were ignored while plotting the graphs;
otherwise, they would make them visually unreadable. These out-
liers were a result of the erratic output of the crazyflie’s logger
module.

In-place flight is the most accurate measurement of drift, as
shown in Fig. 6. It does not involve any potential confounding
variables that Crazyflie’s motion commander module might have.
Hence, we used in-place flight as our baseline for drift comprehen-
sion and analysis.
Crazyflie 2.1+: Depicted in Fig. 6, Fig. 7, Fig. 8, Fig. 9, and Fig. 10.
Crazyflie 2.1: Depicted in Fig. 11.
Crazyflie 2.1 with new propellers: Depicted in Fig. 12.
Crazyflie 2.1+ with a patterned floor: Depicted in Fig. 13, Fig. 5.

5.2 Threats to Validity
Our experiments, despite their rigorous nature and proof, have
the potential to be limiting due to small mechanical discrepancies
between quadcopter builds. However, the general conclusion on

17



IJSCAR VOL. 2, ISSUE 1, April, 2025, NY, NY Vihaan Bhaduri and Mark Santolucito

the omnipresence and potentially detrimental drift is undeniable
across drones.
Internal Validity: The quadcopters that we used in our experi-
ments could potentially have had mechanical defects. This could
include motherboard variations, warped propellers, or misaligned
battery installation. Despite our thorough balancing of the pro-
pellors, and precise installation of the quadcopter components, a
chance of mechanical misalignment remained unavoidable that
could have affected the drift slightly.
External Validity: There is no guarantee; in fact, it is nearly impos-
sible to duplicate this study. However, a replication of this work is
certainly possible. While it may not yield the exact results presented
in this paper, it will likely show a similar trend and conclusion, un-
less it is inherently addressed in future Crazyflie models. Every
quadcopter is made uniquely, and thus drift is more noticeable in
some than in others. This generalization may apply to all miniature
drone models, not just the Crazyflie series by Bitcraze. However,
drift can potentially be mitigated, regardless of the type of quad-
copter. We proposed a few options in Section 6.1 (Future Work).

5.3 Analysis
Our different flight trials gave us a varying set of data points. How-
ever, all plots indicated one key element: drift is evident in all our
unique flight types - dominant in Crazyflie 2.1 and a little less
dominant in Crazyflie 2.1+.

The Crazyflie logger module and the motion commander module
also presented inaccurate results. The data from the logger module
often deviated drastically from the ground truth values in both the
’x’ and ’y’ directions. The use of the logger module when attempting
to control flight is problematic, as its inaccurate positional estimates
would make the flight adjustment process difficult. Furthermore,
the motion commander module often was unable to move the drone
as expected. For instance, with the Crazyflie 2.1+, in-place (hover)
flight deviated by around 10-15 centimeters in both the ’x’ and ’y’
directions; rightward and leftward lateral flights deviated by around
50 centimeters in the ’y’ direction. Even forward and backward
flights demonstrated significant drifts with an average variation
of (-7.51 cm, 17.14 cm) for forward flight and (-0.34 cm, -38.40 cm)
for backward flight from the ideal. Our trials for in-place flight in
Crazyflie 2.1 gave us an average deviation of (42.46 cm, -53.62 cm)
when taking off from (0, 0).

In addition, we witnessed an inconsistency in drift when we
replaced the propellers of the Crazyflie drone as shown in Fig. 3.
When the counterclockwise rotating propellers were replaced with
a new pair, the average coordinates for in-place flight was (-17.30 cm,
46.93 cm) as shown in Fig. 12 graph. Thus, any form of mechanical
deviation like a propeller replacement, would alter the flight trend,
making the drone’s flight unpredictable. This can pose a major
handicap for precise navigation and flight safety. Consistency is
hard to come by in the Crazyflie models. Even without a change
in flight type or mechanical components, the drone would still not
produce repeatable results. This can be seen by the often fluctuating
running mean plots shown in Fig. 4(b).

The variability within each of the datasets is concerning and can
be seen in the (b) and (c) graphs throughout Fig. 6 - Fig 13 in details.
To aid visualization, a summary graph showing this variability is

Figure 3: Replaced anticlockwise propeller pair (Adapted
from Bitcraze Getting Started Guide [3])

presented in Fig. 4. The difference between flight drift indicates an
inconsistency in flight. This implies that drift can affect a quadcopter
in a different way each flight. For instance, one flight may cause
the drone to drift by 10 cm in the rightwards direction while the
next flight may cause a 10 cm drift in the leftwards direction. It is
possible that a simple human touch to a propeller or to the drone’s
framework, altering drift’s effect.

To ensure minimal to no drift and achieve precise flight behavior
when the PMW3901 optical sensor of the Crazyflie’s flow deck
module detects a patterned or textured floor, we conducted an
experiment using a custom nonuniform checkered pattern on the
floor, as shown in Fig. 5. This setup allowed us to evaluate the optical
sensor’s effectiveness in stabilizing the Crazyflie’s motion and if
it could generate consistent optical flow data for better trajectory
control and drift. However, the results in Fig. 13 showed no visible
improvement, as drift persisted. This indicates that the checkered
floor pattern did not enhance the performance of the PMW3901
optical flow sensor or effectively reduce drift in the Crazyflie’s
flight.

6 Conclusions
We empirically demonstrated that drift in Crazyflie quadcopters is
undeniable. We also showed the inaccuracies in Crazyflie’s inherent
logger module and how it differed from our meticulous manual mea-
surements. We demonstrated that by changing mechanical parts
like propellors or the Crazyflie model to the latest one failed to
eliminate or drastically reduce drift. Lastly, we proved that a check-
ered pattern on the floor yielded no noticeable reduction in drift
or flight behavior. Since drift is unavoidable, it can be detrimental
to flight safety and precise navigation. Hence, in our future work,
we explore potential methods to combat drift and improve flight
precision, safety, and reliability.
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(a) Logger module: Running Average Plot
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(b) Manual measurement: Running Average Plot

Figure 4: Summary plots showing variability of datasets
Average Point for Logger Module Data: (6.57 cm, -20.64 cm);
Average Point for Manual Msmnt. Data: (13.50 cm, -9.93 cm)

6.1 Future Work
This drone analysis has paved the way for critical improvements in
Crazyflie drone flight trajectories. To counteract mechanically and
externally induced drift, we can implement a simple program to
stabilize flight. By continuously monitoring the drone’s position, we
can confine its movement within a predefined boundary, preventing
excessive displacement. This ensures precise, stable, and controlled
flight, enhancing overall performance and reliability.

Another effective way to counteract drift is by adjusting the
drone’s flight perspective based on a detailed drift analysis. For
example, if the drone consistently drifts ’x’ centimeters to the right
when flying forward, a program can be designed to compensate for
this deviation, ensuring a more accurate trajectory. However, this
auto-correction is only viable in scenarios where the drift pattern
remains consistent. For inconsistent drift, a more complex program
can be designed to compensate and correct the flight path on the
fly. Using any of these, the impact of drift on a quadcopter can be
effectively mitigated.

Figure 5: Nonuniform checkered pattern on floor

Furthermore, our work with Crazyflie models has opened the
door to a wide range of innovative possibilities. One promising
avenue is the implementation of a runtime monitoring framework
like RTLola on small-scale drones, such as those used in this study.
This integration could enhance safety mechanisms, allowing nano-
quadcopters to operate beyond traditional boundaries while min-
imizing the risk of damaging expensive equipment. Additionally,
the modular design of these drones makes them easily adaptable,
enabling cost-effective prototyping and rapid development of new
technologies.
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 6: Crazyflie 2.1+ Plot - In-Place Flight
Outliers: None

Average Point for Logger Data: (6.57 cm, -20.64 cm); Average Point for Manual Data: (13.50 cm, -9.93 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 7: Crazyflie 2.1+ Plot - Forward Path Flight
Outliers: 1st Data Point Collected - (2.56 cm, 22.55 cm, 0.01 cm)

Average Point for Logger Data: (-38.86 cm, 29.74 cm); Average Point for Manual Data: (-7.51 cm, 17.14 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 8: Crazyflie 2.1+ Plot - Backward Path Flight
Outliers: 1st Data Point: (-78.98 cm, -69.41 cm, 0.005 cm); 22nd Data Point: (-29.00 cm, 1.50 cm, 0.004 cm)

Average Point for Logger Data: (12.61 cm, -91.01 cm); Average Point for Manual Data: (-0.34 cm, -38.40 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 9: Crazyflie 2.1+ Plot - Rightward Path Flight
Outliers: 1st Data Point: (4.80 cm, 0.03 cm, 0.01 cm); 6th Data Point: (-5.71 cm, 1.98 cm, 0.008 cm); 12th Data Point: (-7.06 cm, 3.35 cm, 0.01 cm)

Average Point for Logger Data: (62.04 cm, 0.46 cm); Average Point for Manual Data: (-0.63 cm, -59.69 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 10: Crazyflie 2.1+ Plot - Leftward Path Flight
Outliers: None

Average Point for Logger Data: (-86.81 cm, 70.99 cm); Average Point for Manual Data: (45.43 cm, 12.33 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 11: Crazyflie 2.1 Plot - In-Place Flight
Outliers: 26th Data Point: (0.26 cm, 0.53 cm, -3.07e-05 cm); 36th Data Point: (-15.18 cm, -33.78 cm, 0.004 cm)

Average Drift for Logger Data: (33.72 cm, -52.43 cm); Average Point for Manual Data: (42.46 cm, -53.62 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 12: Crazyflie 2.1 with Replaced Propellers Plot - In-Place Flight
Outliers: 3rd Data Point: (-80.70 cm, 83.47 cm, 0.004 cm)

Average Point for Logger Data: (-7.80 cm, -7.57 cm); Average Point for Manual Data: (-17.30 cm, 46.93 cm)
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(b) Logger module: Running Avg. Plot
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(c) Manual measurement: Running Avg. Plot

Figure 13: Crazyflie 2.1 with Patterned Floor Plot - In-Place Flight
Outliers: 3rd Data Point: (-4.86 cm, -3.92 cm, 0.01 cm); 6th Data Point: (-5.28 cm, 3.75 cm, 0.01 cm)

Average Point for Logger Data: (-55.83 cm, -104.25 cm); Average Point for Manual Data: (-21.10 cm, 42.976 cm)
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Abstract
Recent advancements in Large Language Models (LLMs) have trans-
formed code generation across various programming languages.
However, there remains a significant gap in research regarding their
application to hardware description languages, particularly Verilog.
This gap is especially critical as hardware development becomes
increasingly complex and automated assistance could substantially
reduce development time and minimize errors in system design.

To address this challenge, we conducted a comprehensive abla-
tion study comparing GPT-4o, GPT-4o mini, and GPT-3.5 Turbo
for Verilog code generation. Our methodology involved evaluating
four distinct approaches: (1) one-shot generation as a baseline, (2)
multi-shot generation, (3) an error correction pipeline for handling
compilation errors, and (4) a full framework that addresses both
compilation and functional errors. Our results demonstrate that
the full framework significantly outperforms baseline approaches
across all tested models.

The results show that the full framework outperformed all base-
line methods, eliminating compilation errors entirely and increas-
ing the overall pass rate by up to 17.65%. In the ablation study,
the multi-shot generation and error-handling components demon-
strated incremental improvements of 1.96% and 5.88%, respectively,
underscoring the contribution of each component to the frame-
work’s effectiveness.
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1 Introduction
Verilog is a popular hardware description language (HDL) widely
used in electronic design automation to model and simulate digital
circuits. It allows designers to describe the structure and behavior of
digital systems at a high level of abstraction. However, writing func-
tionally correct Verilog code can be challenging. Verilog requires
a deep understanding of hardware-specific constructs, which are
difficult to understand without a deep domain knowledge. These
complexities make human coding prone to subtle errors that can

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
IJSCAR VOL. 2, ISSUE 1
© 2025 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.

lead to malfunctioning hardware or performance inefficiencies.
LLMs offer promising potential in assisting with Verilog code gen-
eration by automating parts of the development process. LLMs can
quickly generate code based on natural language prompts, reduc-
ing development time and aiding engineers in addressing complex
design specifications.

Despite the success of LLMs in generating code for a wide range
of languages [2, 3, 8, 13], generating Verilog code remains a chal-
lenge [7, 15, 16]. Single-shot generation, where the model produces
code from a single input prompt, often fails to yield functionally
accurate and optimized code [6]. These limitations reveal a clear
need for a specialized framework that iteratively refines and val-
idates code outputs, ensuring they meet the strict accuracy and
performance standards essential for hardware design. Thus, we
focus our work on the ability of LLMs to use compliler feedback
and test feedback to iteratively refine code.

To address these challenges, we conducted an ablation study
comparing GPT-4o, GPT-4o Mini, and GPT-3.5 Turbo for Verilog
code generation. We introduce a novel framework designed to
systematically address both compilation and functional errors by
identifying specific issues and utilizing the LLM to generate tar-
geted corrections. Our approach incorporates multi-shot generation
and iterative refinement techniques to progressively improve code
quality.

This paper aims to evaluate the effectiveness of LLMs in generat-
ing syntactically and functionally correct Verilog code and proposes
a framework to enhance code generation accuracy. In summary,
the key contributions of this paper are:

• We provide a comprehensive evaluation of LLMs for Ver-
ilog code generation, including an ablation study and a full
framework for improved accuracy.

• We identify specific challenges in generating functionally
correct Verilog code and provide insights for future research
in this area.

• Wemake our code and datasets publicly available to facilitate
further research in this domain.

2 Related Work
The advent of LLMs has markedly transformed the landscape of au-
tomated code generation, significantly altering the methodologies
and practices employed by developers in the software engineering
domain. Among the most compelling applications of LLMs is their
capacity to facilitate code generation, which holds tremendous up-
side and has garnered interest from both academia and industry
alike [1–3, 5, 7, 8, 10, 13, 15–17, 19]. General-purpose tools, such as
ChatGPT [10], Github Copilot [5], and Claude [1], have surged in
popularity in recent years, largely attributable to their user-friendly
interfaces and versatility across various programming tasks. Ac-
cording to a survey conducted by GitHub, 92% of developers report
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using AI-based coding tools either in their professional or personal
projects, with 70% believing that such tools offer them an advantage
in their work [14]. These findings underscore a broader trend of
widespread adoption and positive reception of LLM-based code
generation. This phenomenon has prompted extensive research
aimed at evaluating the performance of domain-specific LLM-based
code generation and identifying approaches to enhance their effec-
tiveness.

While general-purpose tools can perform a broad range of tasks,
they often struggle with generating code that requires specialized
domain knowledge, particularly for less commonly used program-
ming languages. As a result, in parallel with the development of
general-purpose applications, there has been a notable increase in
the development of research designed to evaluate the quality of
code generated for specific programming languages and improve
their performances. Research efforts have led to the development
of diverse benchmarks as standardized tests to evaluate the ac-
curacy and efficiency of code generation by LLMs across various
tasks. Among these, HumanEval has emerged as the most widely
recognized benchmark in code generation research [2]. Addition-
ally, it is a common practice to fine-tune certain LLMs for specific
programming languages [13]. This fine-tuning process involves
training models on language-specific datasets, allowing them to
better capture the language’s syntax and structure.

To further improve the syntactical and functional accuracy of
code generated by LLMs, researchers have introduced comprehen-
sive frameworks. SynCode [17] exemplifies this approach, enabling
LLMs to produce syntactically correct code in various formal lan-
guages by integrating user-defined context-free grammars. Tools
such as RustAssistant [3] and RTLFixer [16] also contribute to this
trend, leveraging techniques such as iterative refinement, retrieval-
augmented generation (RAG) [4], and ReAct prompting [19] to
address and improve upon initial code outputs. By systematically
refining the generation process, these frameworks enhance the
reliability and effectiveness of LLM-assisted coding.

Narrowing the focus further, there exists a burgeoning interest
in the application of LLMs specifically for hardware description
languages (HDLs), such as Verilog. The domain-specific knowledge
needed for Verilog along with its unique syntax and semantics
presents a unique challenge for LLMs, necessitating the develop-
ment of targeted models that can reliably generate correct and
functional Verilog code. Previous studies have proposed bench-
marking frameworks to evaluate LLM-generated code [7], while
also fine-tuning and testing older models [15], but there is a lack
of recent and comprehensive research into tracking the efficacy of
LLM-based generation of Verilog code and developing a framework
to improve the correctness of generated code.

3 System
3.1 Framework Overview
As shown in Fig 1, the framework is divided into three components
that build off each other to generate functionally correct code at
the highest possible rate while consuming a minimal amount of
resources. At a high level, the pipeline is designed to generate initial
code and continuously address specific issues, providing targeted

Identify an error

Are there any
compilation

errors?

Error Pipeline

Correctness Pipeline

Initial Code
Generation

Query LLM to fix error

Identify a failing test case

Query LLM to generate code
the passes the test case

Correct compilation errors

Outperforms
previous
version?

Are there any
failing test

cases?

Output code

No

No

No

Yes

Yes

Yes

Figure 1: Code generation framework

fixes until either the code is fully functional or the maximum re-
source capacity has been reached. This framework leverages the
OpenAI API to implement the targeted corrections, specifically uti-
lizing the GPT-4o-2024-08-06, GPT-4o-mini-2024-07-18, and GPT-
3.5-turbo-0125 models, the latest versions at the time of writing.
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It is important for this tool to be able to be subjected to realistic
constraints, the most important of which being a limited number
of API queries. Queries incur both time and financial costs, so it is
important to be able to control the maximum number of queries
to the LLM while retaining optimal performance. By allowing the
LLMs to build on their previous responses with feedback from the
compiler or the test cases, we found that the model utilized the
given resources effectively to improve upon the initially generated
code.

Initial Generation: The goal of this module is to generate a
starting point that we can build off of in the following components.
We query the LLM with a general template to give it context into
the actions it needs to take and the specified problem, and output
this result directly to the error pipeline.

Error pipeline: The purpose of the error pipeline is to remove
any compilation errors from the code while still maintaining the
initial functionality. At a high level, this pipeline includes two main
sections - error identification and error correction. The framework
will initially identify any compilation errors in the code, advancing
directly to the functional pipeline if there are no errors. Once a
specific error is identified, it will transition to the error correction
phase and query the LLM to provide a targeted fix. Then, this
process will repeat from the beginning, with another issue being
identified and corrected until the code compiles successfully, at
which point it will advance to the correctness pipeline.

Correctness pipeline: The objective of the correctness pipeline
is to produce functionally correct code, meaning for each input the
code produces an output satisfying the specification. It builds on
top of the error pipeline, taking in compilable code that may or
may not be functionally correct. The pipeline begins by assessing
whether any test cases are failing. If the code is functionally correct,
it outputs the code as the final solution. In the event of a failure, the
pipeline identifies the specific test case that is not passing, queries
the LLM to generate a targeted adjustment aimed at resolving the
identified issue, and finally subjects the code to the error pipeline
to ensure that it is compilable. A prevalent issue observed was the
LLM’s tendency to inadvertently introduce regressions into the
code while attempting to address an issue, causing the code to fail
previously passed test cases and rendering it less effective than the
prior iterations. In such a scenario, the code would be reverted back
to the previous version and the LLM would be queried again in an
attempt to resolve the issue. This iterative process of identifying
failing test cases and applying corrections occurs until the code
successfully passes all test cases. However, in some instances, the
model exhibited repetitive behavior, consistently "hard-coding" the
same response regardless of the number of queries. To mitigate
this issue, we adjusted the temperature parameter of the LLM,
increasing response variability and encouraging the generation of
alternative solutions. Additionally, we implemented a fixed limit on
the number of iterations the model could spend addressing a single
issue. This constraint prevented the system from entering infinite
loops, thereby optimizing computational efficiency and preventing
unnecessary resource consumption.

3.2 Problem Simulation
To effectively showcase the functionality and structure of the frame-
work, we begin by presenting a sample problem. This problem
serves as a practical example through which the framework’s core
processes can be demonstrated. Through a systematic analysis, we
will demonstrate the framework’s capacity to address challenges in
code generation, highlighting its ability to methodically refine the
code to produce a fully functional solution.

As shown in Fig 2, the problem outlines a Verilog module for a
signed adder that takes two 8-bit 2’s complement numbers (a and
b) as inputs, produces their sum (s), and detects if a signed overflow
occurs during the addition (overflow). The key contribution of the
signed adder is to account for the signs of the numbers while adding,
with the most significant bit (MSB) representing the sign of the
value. A signed overflow occurs when the sum of the numbers
exceeds the range for the given number of bits, causing the number
to wrap around and produce an incorrect result.

// This is a signed adder that adds two 8-bit 2's

complement numbers. It also captures a signed

overflow.

module signed_adder(input [7:0] a, input [7:0] b, output

[7:0] s, output overflow );

Figure 2: Problem statement

Initial Generation: The code produced by the initial generation
of the framework is illustrated in Fig 3. This code implements the
majority of the details correctly, but contains minor compilation
and functional errors. Errors during the initial generation phase
are anticipated, as this stage serves as a foundational starting point
upon which the error and correctness pipelines can build.

1 module signed_adder(input [7:0] a,

2 input [7:0] b,

3 output reg [7:0] s,

4 output wire overflow

5 );

6

7 assign s = a+b;

8 assign overflow = a[7]&&b[7]&&(~s[7]);

9

10 endmodule

.\ compilation -error.v:7: error: reg s; cannot be driven

by primitives or continuous assignment. 1 error(s)

during elaboration.

Figure 3: Initial generation code

Error Pipeline: The initial step in the error pipeline involves
verifying the presence of any compilation errors. As identified in
Fig 3, the error arises from attempting to drive a variables with
type reg (s) using a continuous assignment, which is prohibited in
Verilog. To resolve this, the variable s must be declared as wire [20].
This specific error, along with the relevant code, is provided to
the LLM, which is tasked with generating a targeted correction
to address the issue. The results of this operation can be seen in
Fig 4, along with its failing test case. The process subsequently
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advances to the initial step once again, attempting to identify if
there are any compilation errors. As the code is compilable, the
process transitions to the correctness pipeline.

1 module signed_adder(input [7:0] a,

2 input [7:0] b,

3 output [7:0] s,

4 output overflow

5 );

6

7 assign s = a+b;

8 assign overflow = a[7]&&b[7]&&(~s[7]);

9

10 endmodule

Case 3 failed

Input:

a=8' b01000000; b=8' b01000000;

#period;

Correct output: s=8' b10000000 overflow='b1

Given output: s=8' b10000000 overflow='b0

Figure 4: Error pipeline code

Correctness pipeline: The first steps in the correctness pipeline
are to identify if there are any failing test cases, which is made
clearly evident in Fig 4. The failing test case results from a func-
tional error in the code, specifically its failure to detect overflow
when both a and b are positive, but their signed sum evaluates to a
negative value. This error occurs because overflow is only identi-
fied when a and b are positive and s is negative, but not under the
inverse conditions. Upon identifying the failing test case, the LLM
is queried to generate code that passes the specified test case, while
any compilation errors are addressed using the previously covered
error pipeline. The output of these operations is illustrated in Fig 5.
However, the solution remains functionally incorrect due to a flaw
in the overflow detection logic. Specifically, overflow is assigned
a value of 1 when the sign of a differs from the sign of the sum
(s). This approach is demonstrably incorrect, as evidenced by the
failing test case provided. For instance, when a is -5 and b is 50, the
sum is 45, and overflow is incorrectly set to 1 due to the mismatched
signs of a and s. In this scenario, overflow should instead be 0, as
no overflow occurs. This issue is addressed in the subsequent stage
of the correctness pipeline, which involves comparing the updated
solution with its previous iteration. The LLM is then queried once
more to generate code that successfully passes the failing test case.
The newly generated code, as shown in Fig 6, incorporates the
revised logic: assigning an overflow value of 1 when both a and b
are negative and the sum is positive. Upon evaluation, this version
is found to outperform the previous iteration and pass all of the
test cases, allowing the code to be designated as the final version.

As demonstrated, this process of iterative refinement proves to
be effective. By employing a minimal number of queries, it was
possible to generate fully functional code. This gradual, targeted
approach ensures a more efficient use of resources and increases
the likelihood of generating a correct and optimized solution.

3.3 Framework Implementation
This section offers a detailed examination of the framework’s logic
and structure. Designed as a command-line tool, the framework

1 module signed_adder(input [7:0] a,

2 input [7:0] b,

3 output [7:0] s,

4 output overflow

5 );

6

7 assign s = a + b;

8 assign overflow = s[7] != a[7];

9

10 endmodule

Case 2 failed

Input:

a=8'b11111011; b=8' b00110010;

#period;

Correct output: s=8'b00101101 overflow='b0

Given output: s=8'b00101101 overflow='b1

Figure 5: Regressed solution code

1 module signed_adder(input [7:0] a,

2 input [7:0] b,

3 output [7:0] s,

4 output overflow

5 );

6

7 assign s = a+b;

8 assign overflow = a[7]&&b[7]&&(~s[7]) || (~a[7]) &&(~b

[7]) &&(s[7]);

9

10 endmodule

All cases passed

Figure 6: Full solution code

accepts input through a text file and generates output stored in a
Verilog file. Several details are abstracted or slightly modified in
this section to better explain the overall structure of the code, the
most important being the underlying functions such as checkErrs(),
checkCorrectness(), and passingCases(). Despite not being included
in the pseudocode, these are covered in detail and available as sep-
arate files in the GitHub repository [12]. Furthermore, the prompts
provided to the LLM to enhance its understanding of both and
functional errors are embedded as variables, such as errMessage
and correctnessMessage. While these variables are not explicitly
visible during the model’s decision-making process, they have been
systematically fine-tuned on a diverse set of sample problems to
maximize comprehensibility. This careful tuning ensures that the
LLM receives clear and structured feedback, allowing it to develop a
form of "chain of thought" reasoning [9]. Empirical observations in-
dicate that as the clarity and specificity of these prompts increased,
the model’s overall performance in resolving errors exhibited a
corresponding improvement.

Initial Generation: The queryLLM function utilizes the prompt
and queries the chosen LLM a certain of times, returning the best
result, i.e., the one with the least errors and highest number of test
cases passed (line 38 of pseudocode in Fig 7). The number of LLM
queries is determined by the user-defined parameter numShots,
which can be adjusted based on design specifications. The input
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prompt is constructed as startMessage + prompt, where startMes-
sage provides contextual information and specifies the required
output format, while prompt defines the specific problem to solve.

Error Pipeline: The purpose of the error pipeline is to remove
all errors from the code while still maintaining the intended func-
tionality (line 40). It takes in two parameters, the code and the
problem statement and outputs a revised version of the code that is
error free. The central concept of this pipeline is that the LLM can
process feedback in the form of error messages and use it to correct
the code, eliminating the identified errors. One particularly intrigu-
ing aspect of Verilog is that its compilation errors often lack clarity,
presenting a significant challenge for human developers during
the debugging process. This raises the question of whether LLMs
would encounter similar difficulties when tasked with interpreting
and resolving such errors.

The algorithm starts by checking the code for errors and storing
those in a set (line 5). This approach ensures that duplicate errors
are eliminated and facilitates rapid error lookups. In line 6, we
establish a separate set for errors deemed irreparable. Failure to
resolve an error may arise from multiple factors, such as a lack of
domain specific knowledge, ambiguity in the error, or misunder-
standing the intent. The consequence is that the LLM is unable to
resolve the issue, resulting in a potential waste of valuable time
and resources if the model is continuously queried without success.
The consequence is that the LLM is unable to resolve the issue,
resulting in a potential waste of time and resources if the model is
continuously queried without success. Consequently, errors that
the LLM cannot address are categorized into failedSet on line 17. No-
tably, these unresolved errors are often rectified by the subsequent
resolution of other underlying errors that initially contributed to
their emergence.

Lines 7-20 are where the body of the error-fixing process occurs.
We continuously iterate through the loop as long as there are re-
maining errors in the code, selecting a specific error for resolution
with each iteration. Given that modifications to the code can lead to
the emergence of new errors during the correction of existing ones,
we implement an abstraction termed an error group to effectively
manage this complexity (line 8). As we proceed with the resolution
process, any newly encountered errors that arise will be incorpo-
rated into the error group (line 15). This iterative process continues
until the error group is completely emptied. As previously noted,
there are instances in which the LLM is unable to rectify certain er-
rors. We classify the error as unfixable if it persists despite revisions
aimed at resolving the issue (line 16-19). Consequently, should we
encounter this unresolvable error again during our examination of
the error group, we will simply disregard it and move onto the next
error (lines 12-13).

We implement several heuristics to ensure that the code remains
within a specified query limit. For clarity, these heuristics are not
detailed in the pseudocode. We impose a maximum limit for the
number of times the outer loop can run (line 7) and allow the user
to define a fixed number of iterations for the inner loop (line 10).
Additionally, when the LLM is queried, it executes a user-defined
number of queries, represented by numShots, and selects the opti-
mal response from among them (line 14).

Correctness Pipeline: This pipeline accepts error-free code
along with the problem statement and produces functionally cor-
rect code that successfully passes all test cases (line 42). Prior to
initiating the pipeline’s core processes, three key concepts are in-
corporated. First, the pipeline maintains a record of all previously
passed test cases, enabling verification that the current code per-
forms at least as well as prior iterations (line 24). Since the LLM
occasionally generates revisions that inadvertently reduce code
performance, causing earlier test cases to fail, this measure serves
as a safeguard against regression. Second, we incorporate a version
control mechanism, adapted from the error pipeline (line 26). This
allows us to revert the code to its prior state if earlier test cases
begin to fail. Third, we track the current failing test case, which is
later provided to the LLM as feedback, guiding it in refining the
code to pass additional test cases (line 25).

The main processing occurs within the while loop, where we
iterate through the code body until all test cases are successfully
passed, as indicated by the checkCorrectness() function returning
’all cases passed’ (line 27). The information from the failing test
cases is used to guide the LLM in generating an improved version
of the code that addresses the specific failure. We provide the LLM
with a structured prompt that includes contextual information on
deriving and formatting the solution, as well as the current code,
the failing test case, and the original problem statement (line 28).
Including the problem statement is crucial, as it helps the LLM
remain focused on the intended solution; without it, we found that
the LLM tends to ’hardcode’ responses, inadvertently causing other
test cases to fail. Next, we apply the error pipeline to the newly
generated code to ensure it is free from errors (line 29). Following
this, we assess whether the code has regressed: if it fails a test case
it previously passed, we employ version control to revert to a more
functional version (lines 30-32). If no regression is detected, we can
confirm that the current code represents the best iteration to date.
Consequently, we save this version and update the set of solved
test cases (lines 33-35). Finally we return the completed code at the
conclusion of the process (line 36).

We employ heuristics similar to those in the error pipeline to
constrain the number of queries sent by the code. The primary
heuristic is a fixed limit on the number of while loop iterations (line
27), which is set to a constant value configurable by the user.

4 Evaluation
4.1 Results
4.1.1 Experimental Design. To evaluate the effectiveness of our
framework for generating Verilog code, we selected a series of
problem sets and benchmarks from [15]. These benchmarks offer
a thorough evaluation of code generation accuracy, and the prob-
lem set is well-suited for examining the performance of LLMs in
hardware design tasks.

The problem set in VGen is systematically categorized into three
levels of difficulty: basic, intermediate, and advanced, ensuring a
progressive evaluation of the LLM’s Verilog code generation capa-
bilities. The dataset consists of 17 distinct problems, each designed
to cover a broad range of digital design concepts, including combi-
national and sequential logic, arithmetic operations, and finite state
machines (FSMs). This diverse selection ensures a comprehensive
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1 Input: Problem description

2 Output: Code that has no compilation errors and behaves

according to the specifications of the problem

description

3

4 def errPipeline(code , problem):

5 errs = checkErrs(code)

6 failedErrs = {}

7 while errs != {}:

8 errGroup = {errs.pop()}

9 snap = code

10 while errGroup != {}:

11 currentErr = errGroup.pop()

12 if currentErr not in checkErrs(code):

13 continue

14 code = queryLLM(errMessage+currentErr+code+

problem , numShots)

15 errGroup = checkErrs(code)-errSet

16 if currentErr in errGroup:

17 failedErrs.append(currentError)

18 errGroup.remove(currentErr)

19 code = snap

20 errSet = checkErrs(code)-failedErrs

21 return code

22

23 def correctnessPipeline(code , problem):

24 solvedCases = {}

25 failingCase = checkCorrectness(code)

26 snap = code

27 while failingCase != "all cases passed ":

28 code = queryLLM(correctnessMessage+code+

failingCase+problem , numShots)

29 code = errPipeline(code)

30 failingCase = checkCorrectness(code)

31 if failingCase in solvedCases:

32 code = snap

33 else:

34 snap = code

35 solvedCases = passingCases(code)

36 return code

37

38 code = queryLLM(startMessage+prompt , numShots)

39

40 code = errPipeline(code , problem)

41

42 code = correctnessPipeline(code)

Figure 7: Pipeline pseudocode

assessment of the LLM’s ability to generate Verilog across various
complexity levels.

Each problem is further subdivided into three distinct prompts,
all addressing the same core problem but differing in the level of
explicit guidance provided. The prompts range from highly specific
instructions, which closely outline the implementation strategy,
to open-ended problem descriptions that require the model to in-
dependently determine the appropriate approach. This structured
variation enables an analysis of how prompt specificity impacts the
LLM’s performance and reasoning ability in Verilog code genera-
tion.

To ensure objective evaluation, each problem is accompanied
by a dedicated testbench that verifies the functional correctness of
the generated Verilog code. These testbenches consist of multiple
test cases, systematically designed to evaluate different edge cases

and functional requirements within each problem. The testbenches
serve as a benchmark for correctness, allowing for a clear and
standardized assessment of the generated code’s validity. However,
in our methodology, the testbenches are deliberately excluded from
assisting the LLM in generating functionally correct code.

A contribution of this work is the introduction of individual test
cases for each problem, aimed at enhancing the rate of functionally
correct code generation. In real-world applications, users interact-
ing with an interface often lack access to predefined testbenches to
verify functional correctness. To simulate this scenario, the LLM
was not granted access to the testbenches during the generation
process. However, our findings revealed that without test cases
available for the LLM to be able to identify issues and provide tar-
geted fixes, the LLM produced functionally incorrect code at an
alarmingly high rate. To address this challenge, we developed a
program that enables users to create their own test cases efficiently.
The program allows users to specify parameters such as the module
name, input and output names and values, the number of clock
periods, and the period length. Based on these inputs, the program
generates a fully functional testbench. This user-generated test-
bench can then be utilized by the LLM to verify the correctness of its
code and iteratively refine it if errors are detected. By streamlining
the creation of test cases, this approach addresses the critical need
for functional verification while ensuring ease of use for users.

The framework was evaluated on the problem set using three
distinct OpenAI models: GPT-4o, GPT-4o mini, and GPT-3.5 Turbo.
GPT-4o is designed for complex, multi-step tasks, and is the most
resource-intensive out of the three models. GPT-4o mini is a more
lightweight and affordable version of GPT-4o, and is better for
fast, lightweight tasks. Finally, GPT-3.5 Turbo is a fast, inexpensive
model for simple tasks.

4.1.2 Ablation Study. The purpose of this ablation study is to iso-
late and assess the impact of each component in the code generation
framework on the quality and reliability of LLM-generated Verilog
code. This approach allows us to understand the role of each com-
ponent in improving code quality and to identify which elements
are most essential for generating functionally correct Verilog code.

To evaluate the impact of each component in our code generation
framework, we define a baseline approach and consistent evaluation
metrics. The baseline for this ablation study is the pass@1 metric,
which we will refer to in this paper as the one-shot generation
method. In this, the models respond to each problem with a single
prompt, without any error handling or correctness validation. This
baseline serves as a benchmark, allowing us to clearly see the
relative impact of the other components.

For evaluating each component’s contribution to performance,
we rely on two key metrics: compilation success rate and functional
correctness rate. Compilation success rate measures whether the
generated Verilog code is syntactically correct and free of compila-
tion errors. Functional correctness rate, on the other hand, assesses
whether the generated code performs as expected in terms of func-
tionality by passing the predefined testbenches. Each subsequent
component - multi-shot prompting, error correction, and functional
correction—is evaluated relative to this baseline, allowing us to
observe how each addition improves or impacts the baseline per-
formance.
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The framework comprises of three main components: initial gen-
eration, the error correction pipeline, and the correctness pipeline.
Each component builds upon the previous one to iteratively en-
hance the model’s output. In the following, we describe each compo-
nent and its role in generating high-quality Verilog code. Addition-
ally, single-shot generation is included as a baseline for comparison.
The initial generation is referred to as multi-shot generation to
more precisely capture its function.

• One-Shot Generation (Baseline): This approach serves
as our baseline and involves presenting each problem to
the model once, generating a single response without any
follow-up. With no additional context, examples, or error
handling, this method captures the model’s performance in
generating initial Verilog code.

• Multi-Shot Generation: This component improves upon
the baseline by querying the LLM multiple times and select-
ing the best result—defined as the output with the fewest
compilation errors and the highest number of passed cases.
From the perspective of the code generation diagram pre-
sented in the System section 1, this corresponds solely to the
initial generation component.

• Error Pipeline: This pipeline extends the previous approach
by iteratively refining its output to eliminate errors, as de-
tailed in the system section. Notably, it does not address
functional errors. This encompasses both the initial gen-
eration and error pipeline components found in the code
generation diagram.

• Full Framework: Building upon the error pipeline, the full
framework integrates all components discussed in the sys-
tem section. Its primary advancement lies in its capability
to identify and resolve functional errors effectively. This
pipeline encompasses all components depicted in the code
generation diagram.

With these components defined, we now turn to the results of
our ablation study. The following figures provide a comprehensive
overview of the framework’s overall performance, illustrating how
each component influences the models’ ability to generate function-
ally correct Verilog code, as well as comparing the relative success
rates of each model.
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Figure 8: GPT4o Success Rates Graph
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Figure 9: GPT-4o mini Success Rates Graph
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Figure 10: GPT-3.5 Turbo Success Rates Graph

4.2 Discussion
To fully assess the impact and effectiveness of the framework devel-
oped in this study, it is crucial to analyze the key findings and their
broader implications. The discussion will highlight key takeaways
and insights derived from the results, offering a more thorough un-
derstanding of the effectiveness of the framework, its components,
and the various LLMs utilized.

To assess whether the framework provided a meaningful im-
provement over single-shot generation, it is necessary to evaluate
the difference in the rate of fully functional code generated between
the two approaches. At a high level, the improvements observed
between the initial code generation and the final code output var-
ied considerably across the different LLM models, yet remained
consistently substantial. GPT-4o exhibited the most pronounced
improvement, with a 17.65% increase, underscoring its advanced
reasoning capabilities and its ability to make precise adjustments
to the generated code. The framework also showed a significant
improvement when paired with GPT-4o mini, which achieved a
13.73% improvement in success rates from the initial to final out-
puts. In contrast, GPT-3.5 Turbo exhibited a comparatively poor
performance of 6.12%, reflecting its more limited capacity for rea-
soning and error correction. Overall, the framework proved highly
effective, as demonstrated by the substantial improvements across
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One-shot Multi-shot Error pipeline Full pipeline
Percent passed 72.55% 74.51% 80.39% 90.20%
Percent correctness error 19.61% 19.61% 19.61% 9.80%
Percent compilation error 7.84% 5.88% 0% 0%

Table 1: GPT-4o Success Rates Table

One-shot Multi-shot Error pipeline Full pipeline
Percent passed 60.78% 66.67% 70.59% 74.51%
Percent correctness error 29.41% 27.45% 29.41% 25.49%
Percent compilation error 9.80% 5.88% 0% 0%

Table 2: GPT-4o mini Success Rates Table

One-shot Multi-shot Error pipeline Full pipeline
Percent passed 51.02% 55.10% 55.10% 57.14%
Percent correctness error 28.57% 38.78% 44.90% 42.86%
Percent compilation error 20.41% 6.12% 0% 0%

Table 3: GPT-3.5 Turbo Success Rates Table

all models. Notably, when paired with more advanced LLMs such
as GPT-4o, the framework achieved particularly significant gains.

It is also important to consider the role each component of the
framework played in the final improvement. Initially, one-shot
generation yielded mixed results, with a significant proportion of
cases encountering either compilation or functional errors. This
pattern was consistent across all models, although the frequency of
these errors diminished as the models’ complexity increased, again
underscoring the significant influence that model sophistication
has on error reduction.

Multi-shot generation produced results similar to those of single-
shot generation, but with a notable decrease in both compilation
and functional errors. This would have ensured a more structured
foundation for the framework, guiding it toward more accurate
and reliable solutions and minimizing the risk of diverging into
ineffective or irrelevant paths. An interesting observation was the
behavior of GPT-3.5 Turbo, which exhibited a unique pattern where
the number of compilation errors decreased significantly, only to be
replaced by functional errors. This shift suggests that the inherent
limitations of GPT-3.5 Turbo in reasoning and functional compre-
hension may hinder its ability to effectively address functional
errors, which demand more advanced reasoning capabilities.

Next, the error pipeline proved highly effective, successfully elim-
inating all compilation errors across all three models, highlighting
its crucial role within the framework. The reduction in compilation
errors amounted to approximately 5-6%, with the majority of these
errors subsequently transitioning into functional errors. However,
in some instances, the generated code passed all test cases and the
functional errors were entirely resolved, achieving full functionality.
This further underscores the importance of the error pipeline in
improving the overall performance and reliability of the generated
code.

The correctness pipeline also played a significant role in the
overall final improvement. However, the improvement was more

varied, at about 2-10% depending on the complexity of the model.
As noted earlier, more advanced models, such as GPT-4o, exhibited
greater accuracy improvements in comparison to simpler mod-
els such as GPT-3.5 Turbo. Our findings indicate that these issues
were inherent with GPT-3.5 Turbo, as regardless of the number of
queries, GPT-3.5 Turbo consistently struggled to provide effective
fixes for the more complex problems within the dataset. However,
the correctness pipeline remained a crucial component of the over-
all framework, making a significant contribution to the observed
improvements.

A critical analysis of the performance of various LLM models
is essential for understanding the nuances of their effectiveness
within the framework. By systematically comparing the results from
GPT-3.5 Turbo, GPT-4o, and GPT-4o mini, it is possible to assess the
relative strengths and limitations of each model in the context of
Verilog code generation. All three models were successful in elimi-
nating compilation errors, demonstrating their ability to generate
syntactically correct Verilog code. However, there was significant
variation in their performance with respect to functional errors
and their capacity for improvement over time. GPT-4o emerged as
the most effective model, demonstrating the highest success rate
in generating functionally correct code, as well as the greatest im-
provement in performance. This highlights its superior ability to not
only produce accurate code but also to leverage reasoning to refine
and enhance the code. In contrast, GPT-3.5 Turbo demonstrated the
poorest performance, struggling to achieve consistently accurate
results or improve upon the initial code. GPT-4o mini, while less
powerful than GPT-4o, struck a balance by offering a competitive
performance with a significantly lower computational cost. This
makes GPT-4o mini an appealing option for scenarios where re-
source efficiency is a priority without severely compromising on
accuracy.

Success ratewas used as the evaluationmetric rather than pass@k
because the framework allowed for automatic requerying, making
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it difficult to identify the top k results. Unlike traditional retrieval
tasks, where a fixed set of top results can be ranked and evaluated,
this framework operates iteratively, with each requery refining
the solution to a compilation or functional error. As a result, there
is no clear "top k" set of results; instead, the model continually
evolves its responses, providing a series of progressively improved
fixes until the issue is resolved. The pass@k metric, which relies
on ranking a set of results at a given moment, becomes unsuitable
for this dynamic process where the optimal solution is reached
through successive refinements. Therefore, success rate provides a
more accurate measure of the system’s performance, focusing on
whether the framework ultimately succeeds in fixing the identified
errors rather than how well it ranks intermediate fixes.

While the results of this study demonstrate promising improve-
ments in LLM-assisted Verilog generation, it is important to ac-
knowledge the limitations of the research. Understanding these
constraints provides valuable context for interpreting the findings
and identifying areas for future development. One key limitation of
this study is the relatively narrow range of LLMs used, which may
have constrained the understanding of model performance. Expand-
ing the selection to include additional models, such as OpenAI’s
o1, could offer a more comprehensive view, especially given its
demonstrated success on human exams and ML benchmarks [11].
Additionally, incorporating state-of-the-art models such as Claude
3 Opus, GitHub Copilot, and Grok would enable a more compre-
hensive comparison, providing deeper insights into their reason-
ing capabilities and effectiveness in Verilog code generation. This
study could also have been extended to include a broader range
of programming languages, particularly HDLs closely related to
Verilog, such as SystemVerilog and VHDL. Given SystemVerilog’s
similarities to Verilog, it would likely exhibit comparable behavior.
However, its stricter type enforcement and explicit variable decla-
rations could enhance an LLM’s ability to debug code by providing
more detailed and structured error messages. In contrast, VHDL,
which originates from Ada—a less commonly utilized programming
language—may pose greater challenges for an LLM due to its lim-
ited representation in training data. However, its strong typing
system could enhance the debugging process by imposing strict
constraints, thereby minimizing ambiguities in error detection and
correction. LLMs equipped with advanced chain-of-thought rea-
soning capabilities are likely to achieve greater accuracy in solving
problems in VHDL, as they can leverage knowledge from analo-
gous languages to address novel challenges effectively. Furthermore,
incorporating techniques such as ReAct prompting [19], Retrieval-
Augmented Generation (RAG) [4], or skeletonization [18] could
have enhanced the framework’s ability to generate functionally
correct Verilog code. These factors suggest that while the frame-
work showed promise, there are several opportunities for further
refinement and enhancement.

5 Conclusions
This paper presented an innovative approach to automated hard-
ware design verification through the development of a framework
that leverages LLMs to detect and correct both compilation and
logical errors in Verilog code. By addressing the critical challenge
of hardware design validation, our work demonstrates significant

potential for reducing development time and improving code relia-
bility in hardware description languages.

Our primary contribution is the development of an end-to-end
framework that successfully identifies and resolves Verilog errors,
achieving promising results across a diverse set of test cases. The
system not only corrects syntactical errors but also demonstrates ca-
pability in addressing functional errors, a traditionally challenging
aspect of hardware design verification.

Looking ahead, this research opens several promising avenues
for future development. The testing dataset could be expanded
to encompass more complex Verilog constructs and edge cases,
thereby improving the robustness of the error correction system. In
particular, we could explore other benchmark sets of Verilog code
to test the system’s capabilities, such as VerilogHumanEval [7].
Additionally, exploring the integration of specialized LLMs or fine-
tuning existing models could enhance performance specifically
for hardware description languages. Another potential enhance-
ment would be incorporating additional debugging tools beyond
compiler messages, such as ModelSim, Verdi, and GTKWave. This
approach would be particularly novel, as HDLs are unique in that
their outputs can be represented visually through waveforms and
timing diagrams. Exploring the ability LLMs to analyze and de-
bug HDL designs based on visual representations could provide
valuable insights and open new avenues for AI-assisted hardware
verification.

The successful implementation of this automated error correc-
tion system represents a significant step forward in hardware design
verification, potentially transforming how developers approach
HDL debugging and validation. As hardware designs become in-
creasingly complex, such specialized tools will be essential for
ensuring development efficiency and maintaining high standards
of code quality.
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Abstract
Water is one of the most essential resources on Earth, yet many
regions face severe water scarcity due to growing populations, in-
creased land use, and climate change. To address this challenge,
we employed cloud seeding as a promising technique for augment-
ing water supplies. While prior research has primarily focused on
increasing precipitation, this study introduces a novel angle by
examining how cloud seeding-induced rainfall may also influence
regional temperature regulation over time. This dual-purpose in-
vestigation is particularly relevant in arid regions like the Middle
East, where water scarcity and extreme heat coexist.

Using historical datasets and AI-based modeling, including lin-
ear regression and neural networks, we analyzed the relationship
between rainfall and temperature across different regions. Results
revealed a consistent negative correlation between rainfall and tem-
perature, suggesting that cloud seeding may have cooling effects
in addition to boosting precipitation. This study presents early ev-
idence that weather modification could play a role in mitigating
long-term climate stress, offering a new perspective on the benefits
of cloud seeding.
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1 Introduction
Water scarcity, intensified by growing populations, increased land
use, and climate change, has placed significant strain on traditional
water sources such as groundwater, rivers, and reservoirs. This has
prompted a search for innovative solutions, one of which is cloud
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seeding, a weather modification technique designed to enhance
precipitation. First developed in themid-20th century, cloud seeding
involves introducing substances such as silver iodide or sodium
chloride into the atmosphere to stimulate the formation of rain or
snow.

Countries worldwide, including those in the Middle East, have
adopted cloud seeding to tackle critical water challenges. In addition
to increasing rainfall, some suggest that cloud seeding may have
potential secondary effects, such as influencing local temperatures.
This possible relationship is particularly intriguing for regions like
the Middle East, where extreme heat during the summer poses
public health and infrastructure challenges. Despite these possibili-
ties, the intersection between rainfall enhancement through cloud
seeding and its potential impact on temperature regulation remains
poorly understood. Understanding this relationship could reveal
how consistent cloud seeding efforts might not only alleviate water
shortages but also contribute to long-term temperature modera-
tion—a critical insight for regions facing both climate and resource
stress.

2 Related Work
Several studies have examined the effectiveness of cloud seeding
in enhancing precipitation. A review paper titled “A Review of
Cloud Seeding Experiments to Enhance Precipitation and Some
New Prospects” provides a comprehensive overview of the current
status of glaciogenic and hygroscopic seeding experiments (Roelof
T. Bruintjes) [3–5]. It concludes that the potential of precipitation
enhancement through cloud seeding is intricately tied to water
resource management. This study underscores the importance of
linking weather modification techniques to practical applications,
particularly in regions experiencing water shortages.

Another significant contribution is the study “Cloud Seeding Ex-
periments in Australia,” which discusses experiments where silver
iodide smokewas released from the ground (E. J. Smith) [1, 6]. These
experiments showed no immediate results, as the ice-nucleating
properties of silver iodide were rapidly diminished under daylight
exposure. Despite these challenges, the researchers concluded that
cloud seeding with silver iodide has substantial potential for modify-
ing rainfall. However, they also noted the complexities involved, in-
cluding persistent effects of seeding after operations ceased, which
yielded both positive and negative results.

A third paper, “A Cloud-Seeding Experiment in Tasmania,” doc-
uments an experiment conducted using a target area and three
control areas (E. J. Smith, et al.) [2, 7]. This study, which utilized sil-
ver iodide smoke released from aircraft, aimed to measure increases
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in precipitation in a catchment area. The findings indicated that
seeding led to increased rainfall in the eastern half of the target
area during the autumn season. Notably, this study uses the same
dataset that we incorporated, making it a foundational reference
for our analysis.

In addition to the studies already reviewed, several foundational
papers have contributed to the understanding of cloud seeding
dynamics and challenges. For example, Bowen (1966) discussed the
persistent effects of seeding on cloud systems, while Grant (1963)
addressed the residual atmospheric impacts of silver iodide particles.
These works highlight the complexity of atmospheric intervention
and provide important context for interpreting results in modern
seeding experiments.

While these papers provide valuable insights into cloud seeding’s
effects on precipitation, they focus almost exclusively on measuring
rainfall levels or evaluating the techniques themselves. None of the
reviewed studies explicitly investigates the potential correlation
between cloud seeding-induced rainfall and temperature changes.
This gap is particularly significant for regions such as the Middle
East, where extreme heat poses substantial challenges alongside
water scarcity.

Our study aims to bridge this gap by examining the relation-
ship between cloud seeding, precipitation levels, and temperature
changes. By using historical data and employing AI modeling, we
seek to explore the potential for cloud seeding to serve not only
as a tool for water augmentation but also as a means of mitigating
extreme temperatures. This dual-purpose approach could provide
critical insights for regions facing simultaneous water and heat
stress. We focused on the research question: How does cloud seed-
ing influence temperature in different regions? We hypothesize
that increased rainfall due to cloud seeding leads to observable
temperature reductions. Over time, this effect may contribute to
regional cooling, particularly in areas where cloud seeding is used
frequently and consistently. The primary aim of this research is
to develop an AI-based model capable of predicting temperature
changes based on cloud seeding-induced rainfall.

3 System
To begin our project, we researched datasets related to cloud seed-
ing in different regions worldwide and selected one most suitable
for our goals. We chose a dataset from the study “A Cloud-Seeding
Experiment in Tasmania.” The paper details seeded and unseeded
rainfall in various Tasmanian regions such as NC, SC, NWM, and
TE. The dataset includes the period of each recording, the season,
whether the rainfall was seeded or unseeded, and the amount of
rainfall in millimeters. However, this dataset lacked correspond-
ing temperature data for the same regions during each recording
period. To address this limitation, we obtained a dataset contain-
ing temperature records from Tasmania during the same years.
Using the seasonal data and the number of recordings in each sea-
son, we calculated average temperatures for periods with rainfall
and no rainfall. We sorted daily temperature data into rainfall and
no-rainfall categories and then averaged the values. We repeated
this process for all available recordings, producing a new dataset
containing the period, season, location, rainfall amount, and av-
erage temperatures for seeded and unseeded events. This enabled

us to compare temperature differences during rainfall events and
non-events. We employed a linear regression model in Python to es-
timate relationships between rainfall and temperature. We explored
combinations such as average temperatures during rainfall versus
no rainfall (Y-axis) and rainfall amounts (X-axis). The resulting lines
of best fit revealed a consistent negative correlation.

Figure 1: Temperature against amount of rainfall in the
South region

On the X-axis of Figure 1, the rainfall in the South region is
shown, while the Y-axis represents temperature. As illustrated, this
also shows a similar negative correlation.

Figure 2: Temperature against amount of rainfall in the
North region

Figure 2 presents the correlation between rainfall and tempera-
ture during non-rainfall periods. While slightly weaker, the trend
remains generally negative.

To further validate the findings, we implemented neural network
models. We experimented with various configurations of Dense,
Dropout, and Batch Normalization layers using a feedforward neu-
ral network architecture. The model was trained using the Adam
optimizer with a learning rate of 0.001 and the mean squared error
(MSE) loss function. We employed the ReLU activation function
for all hidden layers and used early stopping to prevent overfitting.
The dataset was split into 80 percent training and 20 percent test-
ing. Despite extensive tuning, the best-performing configuration
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included 12 dense layers, one dropout layer (rate = 0.3), and one
batch normalization layer at the input. This configuration achieved
an MSE of 564.3296 after 15 epochs.

Our models primarily used rainfall amount and regional identi-
fiers as input features. While we considered including additional
meteorological variables such as humidity, wind patterns, and at-
mospheric pressure, we excluded them due to the unavailability
of synchronized historical data for those variables in the studied
regions. We acknowledge that incorporating a richer feature set
may enhance predictive accuracy and recommend this for future
research.

4 Evaluation
The results from our analysis using linear regression models con-
sistently demonstrated that increased rainfall correlates with de-
creased temperatures. We reached this conclusion by analyzing
the lines of best fit across different models, where we compared
average temperatures during rainfall or no rainfall (Y-axis) with
rainfall amounts in millimeters across regions (X-axis). Most models
displayed a strong negative correlation, indicating that as rainfall
amounts increased, average temperatures decreased. To validate
and enhance these findings, we used neural network models, which
achieved a mean squared error (MSE) of 564.3296. This MSE value
represents the average squared difference between the predicted
and actual temperature values, providing a quantitative measure
of the model’s accuracy. A lower MSE indicates a smaller average
error and greater predictive reliability. In this study, the MSE of
564.3296 suggests that the model was effective in capturing the
relationship between rainfall amounts and temperature changes,
albeit with some level of variance due to the inherent complexity
of the data. This level of accuracy reinforces the hypothesis of a
negative correlation between rainfall and temperature while also
highlighting the utility of neural networks for modeling complex
environmental phenomena.

Our experimentation revealed that simpler models or more com-
plex configurations performed less effectively. Minor variability
in MSE (between 560 and 570) was observed across multiple runs
due to the stochastic nature of training, but the overall trend re-
mained stable. Overall, our results provide strong evidence that
cloud seeding-induced rainfall has the potential to reduce tempera-
tures. These findings underscore the dual benefits of cloud seeding
in addressing water scarcity andmitigating extreme heat in targeted
regions.

The findings of this study reveal a consistent negative correlation
between increased rainfall and reduced temperatures, highlighting
the dual benefits of cloud seeding in addressing water scarcity
and mitigating extreme heat. This aligns with the hypothesis that
enhanced rainfall from cloud seeding contributes to cooling effects,
making it a potentially transformative tool for regions struggling
with both water shortages and high temperatures.

A significant limitation of this study lies in the dataset selec-
tion. Our analysis is based solely on data from Tasmania, which
raises questions about the generalizability of our findings to other
climates—particularly arid regions like the Middle East, which are
frequently referenced in this paper. While Tasmania provided a

reliable and accessible dataset for initial modeling, it differs substan-
tially in geography, humidity, and seasonal patterns from Middle
Eastern regions. A comparative discussion of Tasmania’s climate
with that of the Middle East could help clarify the potential for gen-
eralizing these findings. Future studies should integrate datasets
from multiple geographical locations to validate the universality of
these results across diverse climatic zones. Compared to previous
studies that primarily evaluated the efficiency of cloud seeding in in-
creasing precipitation, this research extends the scope by exploring
its secondary effects on temperature—although we acknowledge
that this analysis is correlational in nature. This novel perspective
provides a more comprehensive understanding of the broader im-
plications of cloud seeding and underscores its potential to address
interrelated environmental challenges.

It is important to note that while our study identifies a nega-
tive correlation between rainfall and temperature, this does not
establish a causal relationship. The analysis does not account for
potential confounding variables such as seasonal variation, natural
climate patterns, or urban heat island effects, all of which could
independently influence temperature trends. Although our study
focused on historical trends rather than controlled experimental
conditions, future research should incorporate causal inference
methods or real-time controlled experiments to isolate the effects
of cloud seeding. In the current work, such variables were excluded
primarily due to data constraints and the exploratory nature of the
study, but we recognize the need for greater control and rigor in
subsequent analyses.

Another limitation lies in the use of seasonal average tempera-
ture values rather than real-time data. Averaging across long peri-
ods may obscure short-term fluctuations and delay effects of rain-
fall events, potentially diminishing the model’s sensitivity to direct
seeding outcomes. While this approach was necessary due to data
availability, it may limit the precision of temperature predictions.
Future studies should incorporate high-resolution temporal data to
better capture localized weather effects.

5 Conclusions
This study highlights the dual benefits of cloud seeding, demon-
strating its potential to address water scarcity and mitigate extreme
temperatures. By analyzing datasets from Tasmania and employing
both linear regression and neural network models, we identified a
consistent negative correlation between rainfall and temperature.
The neural network models, which achieved a mean squared error
of 564.3296, further support the reliability of these findings despite
certain data limitations.

Our research contributes to a broader understanding of cloud
seeding’s secondary effects, emphasizing its value not only as a
tool for enhancing precipitation but also as a means of addressing
heat stress in vulnerable regions. Practically, this research could
inform policies and strategies for climate adaptation, particularly
in arid and semi-arid environments. For example, countries facing
extreme heat and water scarcity might prioritize cloud seeding as
part of integrated water resource management programs.

Further research should address the limitations of this study by
analyzing datasets from diverse geographic regions with varying
climates to evaluate the universality of these findings. Additionally,
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advancements in modeling techniques—such as the integration of
real-time temperature and rainfall data—could refine predictions
and provide deeper insight into the complex dynamics of weather
modification.

By demonstrating a link between cloud seeding and temperature
change, this research opens a path toward exploring whether sus-
tained use of weather modification could help cool climate-stressed
regions over time. This long-term perspective adds a new dimen-
sion to existing weather modification strategies, merging water
resource management with potential climate mitigation efforts.
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