
Volume 1, Issue 1

International Journal of
Secondary Computing and

Applications Research

EDITOR-IN-CHIEF: DR. MARIA HWANG DECEMBER, 2024

International Journal of Secondary Computing and

Applications Research, Volume 1, Issue 1

December 19, 2024

Letter from the Editor-in-Chief

Welcome to the inaugural issue of the International Journal of Secondary Computing and Applications Re-
search. This volume showcases the excellent work of researchers in our field. Each article reflects the growing
diversity and depth of topics that define modern computing.

We hope these papers will inspire new ideas, foster collaboration, and further research among high school
students. Our goal is to raise awareness and interest in the potential of high school students to bring serious
research to the field of computing. As the editor, I am delighted to present this issue as a testament to
the hard work and dedication of the students who contributed to it, as well as to the future impact of high
school students in computing research.

Enjoy reading, and we look forward to your feedback.

Sincerely,
Maria Hwang
Editor-in-Chief

Volume 1, Issue 1 December 19, 2024
DOI: 10.5281/zenodo.14279457 | https://ijscar.org/pubs/volume1/issue1

© 2024 International Journal of Secondary Computing and Applications Research

1

https://ijscar.org/pubs/volume1/issue1

IJSCAR, Volume 1, Issue 1 December 19, 2024

Contents

• Leveraging LLMs for Automated MIDI Generation
Corey Zhang, Mark Santolucito . 3

• Deep Learning Based Volumetric Segmentation of Heart Ventricles for Assessment of Cardiac Disease Using
MRI
Anika Pallapothu .11

• Using a Feedback Loop for LLM-based Infrastructure as Code Generation
Mayur Amarnath Palavalli, Mark Santolucito .15

• A Case Study on LLM Code Generation in Sonic Pi and Its Impact on Student Attitudes towards Computer
Science
Josch Wang . 19

• Using Model Counting for Game Development: Quantifying Difficulty of 2D Platformer Levels for Diverse
Playable Characters
Aditya Patil, Mark Santolucito . 24

2

Leveraging LLMs for Automated MIDI Generation
Corey Zhang

Eastlake High School
Sammamish, WA, USA
1043437@lwsd.org

Mark Santolucito
Barnard College, Columbia University

New York, USA
msantolu@barnard.edu

Abstract
This paper explores the application of large language models (LLMs)
for music generation, specifically focusing on generating MIDI files,
JSON representations, and music-related code. We aim to leverage
LLM capabilities to automate and enhance the music composition
process. We systematically examine methodologies and tools for
integrating LLMs in music generation with direct music creation
and code-based techniques. The challenge of automating music
composition using AI remains significant due to the complexity
and creativity required in the process. Our findings demonstrate the
potential of LLMs to innovate and streamline music composition,
offering new tools and approaches for musicians and developers.

Keywords
large language models, music generation, code generation
ACM Reference Format:
Corey Zhang and Mark Santolucito. 2024. Leveraging LLMs for Automated
MIDI Generation. In Proceedings of International Journal of Secondary Com-
puting and Applications Research (IJSCAR VOL. 1, ISSUE 1). ACM, New York,
NY, USA, 8 pages. https://doi.org/10.5281/zenodo.14279480

1 Introduction
Music composition traditionally requires significant expertise and
creativity, making it a time-consuming and challenging endeavor.
However, the advent of artificial intelligence (AI) and natural lan-
guage processing (NLP) has introduced novel possibilities for au-
tomating aspects of music composition. Despite these advance-
ments, the application of AI in music composition is still in its
nascent stages, revealing a substantial gap in effectively harnessing
these technologies for creative fields like music. Key areas for im-
provement include enhancing AI’s ability to generate complex and
creative compositions, developing tools for human-AI collaboration,
creating user-friendly interfaces, increasing algorithmic efficiency
and speed, and ensuring the quality and originality of AI-generated
music. Addressing these gaps can democratize music creation and
expand the horizons of musical innovation.

LLMs developed by OpenAI, such as GPT-3.5, have demonstrated
impressive capabilities in generating structured data formats, in-
cluding text and code [17]. LLMs offer the potential to pioneer new
interfaces for musical expression by enabling the integration of
powerful AI systems into networked devices via API calls. Access-
ing the capabilities of LLMs through simple network connections

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
IJSCAR VOL. 1, ISSUE 1
© 2024 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.

can facilitate novel interactions with music, such as real-time music
generation and innovative engagement in live performance con-
texts. However, a significant challenge in leveraging LLMs for music
generation lies in the insufficient understanding of how to effec-
tively utilize these models to produce music that is both coherent
and engaging.

This research explores the potential of these models to gener-
ate music in MIDI and JSON formats, introducing an innovative
approach to music creation. The need for this research is driven by
the opportunity to improve the efficiency and creativity of music
composition through AI, addressing the current limitations, and
exploring new applications of LLMs in the music domain.

We identify the primary contributions of this work as follows:
• Development and evaluation of a framework for integrating
large language models in music generation, utilizing the
OpenAI API for both direct and code-based music generation
in MIDI and JSON formats.

• Identification of benchmark evaluation prompts and the as-
sessment of generated outputs based on three key metrics:
correctness, compliance, and complexity, ensuring the cre-
ation of valid, standard-compliant, and sophisticated musical
compositions.

• Conducting a comparative analysis between LLM-generated
music and traditional code-based music generation, provid-
ing insights into the effectiveness of these models and iden-
tifying potential areas for enhancement in AI-assisted music
composition.

By explicitly developing a comparative analysis and introducing
new benchmark metrics, this work extends beyond previous studies
that primarily focused on either subjective evaluations or singular
methods, thereby providing a more comprehensive contribution
to the field of AI-driven music generation. This research seeks to
advance the field, providing a foundation for future developments
and applications in both computer science and the arts.

2 State of the Art
2.1 Background
The Musical Instrument Digital Interface (MIDI) is a standardized
protocol used for communication between electronic musical in-
struments and computers. MIDI files contain musical information
such as note pitch, duration, velocity, and timing, allowing for play-
back across any compatible device. Unlike traditional audio files,
which store sound waves, MIDI files store instructions for sound
production, offering significant flexibility in musical applications
[12].

JavaScript Object Notation (JSON) is a lightweight, text-based
data interchange format renowned for its human readability and
widespread use in web applications. Within the realm of music

3

https://doi.org/10.5281/zenodo.14279480

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Zhang et al.

technology, JSON represents intricate musical structures, encom-
passing notes, chords, rhythms, and dynamics. This structured
format enhances software applications’ ability to process musical
information, enabling detailed explorations and manipulations of
musical data [1].

Early AI-based music composition methods primarily involved
rule-based systems and algorithmic composition, which often led
to repetitive and predictable outputs due to their rigid structures.
Recent advancements have shifted towards machine learning tech-
niques, offering more flexibility and creativity in music generation.
JSON offers significant advantages in this context, as it can be used
to create complex musical structures by precisely defining musical
elements such as tempo changes, dynamic markings, and articula-
tion patterns, which can then be easily manipulated and interpreted
by software. This detailed representation allows for more nuanced
and sophisticated compositions compared to earlier methods. The
ability to convert JSON data into other formats, such as MIDI, fur-
ther enhances its utility in music technology, allowing for seamless
integration into various musical applications. Integrating MIDI and
JSON within musical applications leverages MIDI’s encoding of
musical attributes and JSON’s capacity to represent complex struc-
tures. This combination enhances music software’s capabilities for
composing, editing, and analyzing musical compositions. MIDI’s
real-time performance instructions and JSON’s structured represen-
tation enable innovative approaches to music creation and analysis,
advancing digital music technologies [2].

LLMs, such as OpenAI’s GPT-3.5, leverage extensive textual
data to exhibit proficiency in generating coherent and contextually
relevant text across diverse domains. These models transcend tra-
ditional text generation tasks, demonstrating competence in code
synthesis, translation, and summarization. Moreover, LLMs’ capabil-
ity to comprehend and manipulate structured data positions them
as viable tools for innovative applications in the arts, particularly
in domains such as music composition. The inherent versatility
of LLMs stems from their training on vast corpora, enabling them
to interpret and generate complex outputs from natural language
prompts. This ability holds promise for transformative applications
in creative fields, including music composition, where LLMs can
facilitate the synthesis of elaborate musical compositions based on
textual descriptions. In the realm of computational creativity, LLMs
represent a paradigm shift, offering computational methodologies
that bridge the gap between textual prompts and creative outputs
in domains traditionally associated with human creativity. By har-
nessing the latent potentials embedded in their training data, these
models enable novel approaches to artistic expression and inno-
vation. The integration of LLMs into creative processes not only
expands the scope of computational tools available to musicians
but also fosters interdisciplinary collaborations between computer
science and artistic endeavors [3].

2.2 Related Work
The application of AI inmusic composition has evolved significantly,
encompassing diverse methodologies and technologies. Early ef-
forts centered on employing predefined rules and algorithms to
generate musical sequences. Recent advancements have leveraged
machine learning techniques, particularly deep learning models,

to analyze and synthesize music. Deep learning, specifically recur-
rent neural networks (RNNs) and convolutional neural networks
(CNNs), has emerged as a powerful tool for music generation. These
models learn intricate patterns from extensive datasets of musical
compositions. Projects like Google’s Magenta and Sony’s Flow Ma-
chines are prominent applications of deep learning in producing
music ranging from simplistic melodies to complex compositions
[5, 7]. Transformer architectures, such as OpenAI’s MuseNet and
Jukedeck, represent a notable advancement in music composition
using AI. These models excel in capturing long-range dependencies
within musical sequences, enabling the generation of diverse and
cohesive musical pieces across various styles and genres [9, 20].

While there has been extensive research on generating music
using AI, the specific use of JSON and MIDI formats in conjunction
with LLMs is relatively new. Previous works have explored the
generation of MIDI files directly from neural networks, but the
integration of JSON as an intermediate representation for music
generation adds a new dimension of flexibility and control [8, 10].
Research by Huang et al. (2018) on Music Transformer [11] and by
Donahue et al. (2019) on LakhNES [4] have focused on generating
MIDI files directly from AI models. These works highlight the fea-
sibility of using deep learning models to create musically coherent
MIDI sequences. JSON’s use in music representation remains un-
derexplored but will be further utilized for structured and detailed
musical composition.

The application of LLMs in creative domains, such as text gener-
ation and code synthesis, has paved the way for their use in music
composition. LLMs can generate creative content, including poetry,
stories, and even programming code, leveraging their understand-
ing of contextual prompts and structural nuances [14]. OpenAI’s
Codex model, a descendant of GPT-3, has demonstrated the capabil-
ity to generate code snippets based on natural language descriptions.
This ability is directly applicable to generating music-related code,
such as scripts for creatingMIDI files or JSON representations ofmu-
sical pieces [18]. Projects like OpenAI’s MuseNet have showcased
that LLMs can generate music by leveraging their understanding of
musical structure and styles. MuseNet can create compositions in
various genres, demonstrating the potential of LLMs to contribute
to music generation tasks [16].

3 Methodology
3.1 Generation Methods
We explored three generation methods for producing MIDI scores
in JSON format. Specifically, we look into Direct Generation, Code
Generation, Rich CodeGeneration. Each of these approaches demon-
strate different design choices in structuring an LLM-powered gen-
erative system.

Direct Generation involves producing MIDI scores in a JSON
format that can be directly utilized without further transformation
or interpretation. This method offers the advantage of providing
immediate output without intermediary steps, thereby reducing the
potential for errors that could arise during format translation. How-
ever, it comes with limitations, such as restricted post-generation
adjustment capabilities, which may hinder fine-tuning and adap-
tation to specific musical requirements. Ensuring the quality of

4

Leveraging LLMs for Automated MIDI Generation
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

output may also necessitate more rigorous evaluation processes to
validate correctness and musical integrity.

Code Generation refers to the production of executable code,
such as JavaScript, which generates MIDI scores. This approach
provides enhanced control over customization and manipulation of
musical elements post-generation. Modifications to the generated
code can be made to optimize performance or tailor compositions to
different stylistic preferences. Nevertheless, it introduces the risk of
errors in code execution, particularly if scripts are not meticulously
crafted or if unexpected issues arise during runtime. Proficiency
in coding is essential to effectively modify scripts and ensure they
meet the desired musical criteria.

Rich Code Generation involves the creation of sophisticated
scripts that incorporate complex data structures and detailed in-
structions for generating intricate musical pieces. This method
excels in providing a higher level of musical nuance and detail,
facilitated by annotations that enhance understanding and modifi-
cation of the generated code. Despite this, the increased complexity
in both generation and execution phases demands substantial com-
putational resources. Execution may require advanced hardware
capabilities to handle the processing demands of complex algo-
rithms and extensive musical data structures effectively.

3.2 Evaluation Metrics
In this section, we introduce three custom evaluation metrics -
Correct, Conceptual Correctness, Compiled, and Complexity - de-
veloped specifically for assessing the generated MIDI pieces in this
study. These metrics are not standard in the research space but were
created to better evaluate the unique aspects of LLM-generated mu-
sic. Below, we explain each metric and provide justification for its
creation.

The Correct metric measures howwell the generatedMIDI pieces
adhere to predefined criteria, assigning a binary value (0 or 1) de-
pending on whether the output satisfies these criteria. This metric
provides a straightforward way to compare the quality of outputs
across a dataset, ensuring consistency in evaluation. However, sub-
jectivity in defining what constitutes “correctness” may introduce
variability in ratings, which could affect the reliability of assess-
ments. Additionally, the Correct metric does not consider whether
the generated music successfully compiles; it focuses solely on qual-
itative aspects of the compositions. It is best suited for scenarios
with clear, well-defined criteria and minimal subjective bias, where
multiple evaluators can assess adherence to compositional rules.

Additionally, we introduce an additional metric, Conceptual Cor-
rectness, which addresses the limitations of traditional correct met-
rics when applied to Rich Code Generation. While traditional cor-
rectness metrics evaluate melodic and harmonic coherence, rhyth-
mic consistency, and tonal balance, these often fall short when
assessing code generated through methods like randomization or
iterative constructs (e.g., Math.random() and for loops). Concep-
tual Correctness assesses whether the generated code aligns with
the compositional instructions—specifically randomization and it-
erative structures—rather than traditional musical qualities. This
metric evaluates the fidelity of the code to the intended procedural
structure.Traditional correctness metrics for evaluating Rich Code
Generation, such as melodic and harmonic coherence, rhythmic

consistency, and tonal balance, often fall short and yield very low
results when assessing code generated through methods involving
randomization and iterative constructs like Math.random() and
for loops. The nature of these data structures can lead to the cre-
ation of incoherent and extremely dissonant music, which may
not align with traditional musical conventions. For example, when
using Math.random() to generate pitches and durations, there is
no guarantee that the resulting musical phrases will adhere to rec-
ognized melodic or harmonic patterns. Similarly, employing for
loops to iterate over musical elements may produce repetitive or
non-musical sequences that lack expressive or structural integrity.

To address these limitations, we propose a modified metric: Con-
ceptual Correctness. This metric assesses whether the generated
code adheres to the compositional instructions involving random-
ization and iterative structures, rather than focusing solely on tra-
ditional musical qualities. Conceptual Correctness ensures that the
generated music aligns with the intended compositional approach,
evaluating the presence of recognizable musical forms, specified
harmonic progressions, rhythmic patterns, and overall coherence
and expressiveness.

Consider a prompt instructing the generation of a piece using
random pitches within a specified scale and repeated rhythmic
patterns via for loops. Traditional metrics might rate the output
poorly due to lack of harmonic progression or melodic development.
However, Conceptual Correctness would evaluate if the generated
code correctly uses randomization to select pitches from the speci-
fied scale and employs for loops to create the repetitive patterns as
described. For instance, if the prompt specifies generating a melody
using random pitches from a C major scale and repeating a rhyth-
mic pattern four times, the traditional metrics might penalize the
output for not having a clear melodic contour or harmonic reso-
lution. On the other hand, Conceptual Correctness would give a
positive score if the code produces notes within the C major scale
and correctly implements the repetitive rhythmic structure.

Using the same binary assessment as correct, Conceptual Cor-
rectness determines if the generated code qualifies as rich code per
the prompt’s intentions. A score of 1 indicates the code meets the
criteria for Rich Code Generation, while a score of 0 indicates it
does not. This metric prioritizes procedural fidelity and structural
guidelines over traditional musical aesthetics, providing a nuanced
evaluation of Rich Code Generation methods.
Example 1: Passing Conceptual Correctness Prompt: Generate MIDI
scores in JSON notation that can be played back by Tone.js

Code:

function generateMIDIScore() {
const tracks = [];
for (let i = 0; i < 4; i++) {

const notes = [];
for (let j = 0; j < 4; j++) {

notes.push({
pitch: Math.floor(Math.random() * 1000)
+ 100,
duration: Math.floor(Math.random() * 4)
+ 1,
startTime: Math.floor(Math.random() * 4)

5

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Zhang et al.

});
}
tracks.push({ notes });

}
return { tracks };

}

generateMIDIScore();

This example passes the Conceptual Correctness criteria because
it adheres to the prompt’s instructions by using for loops and
Math.random() to generate the MIDI score. The generated code
reflects the intended use of iterative constructs and randomization
to produce musical elements, demonstrating rich Code Generation
as specified.
Example 2: Failing Conceptual Correctness Prompt: Generate a
MIDI JSON Bach chorale following counterpoint rules with four
voices following a chord progression and counterpoint harmony
rules

Code:
function generateMIDIScore() {

const midiScore = {
tracks: [

{
notes: [

{ pitch: Math.floor(Math.random() *
(1000 - 100)) + 100, duration:
Math.floor(Math.random() * 4) + 1,
startTime: 0 },
{ pitch: Math.floor(Math.random() *
(1000 - 100)) + 100, duration:
Math.floor(Math.random() * 4) + 1,
startTime: 1 },
// ... more notes for voice 1

]
},
...

}

generateMIDIScore();

This example fails the Conceptual Correctness criteria because
the segment of the generated code shown below does not fully
adhere to the prompt’s instructions. Although it generates a MIDI
score with four voices, it does not follow counterpoint rules, chord
progressions, or harmony rules as specified. Additionally, it lacks
the use of iterative constructs like for loops to generate the musical
elements, and the comment within the code indicates incomplete
implementation. Thus, it does not meet the criteria for rich Code
Generation as intended by the prompt.

The Compiled metric refines the Correct metric by evaluating
only those MIDI pieces that compile successfully into executable
outputs, also assigning a binary value (0 or 1) based on compilation
success. This metric enhances practical usability assessment by
ensuring that the evaluated pieces are not only correct in structure
but also executable in real-world applications. However, Compiled
may overlook high-quality pieces that fail compilation due to mi-
nor, non-musical errors, which could reduce its utility in scenarios

where frequent compilation issues arise. This metric is ideal for
evaluating the practical execution of music alongside its aesthetic
or structural quality.

The Complexity metric quantifies the intricacy of the generated
music by measuring the number of individual notes in the MIDI
representation. This metric offers an objective measure of musical
detail and variation, correlating with the creative richness of com-
positions. However, high Complexity does not always equate to
superior quality or musicality, as excessively complex pieces can
be chaotic and less aesthetically pleasing. Therefore, Complexity
is best used in conjunction with other metrics to ensure that in-
creased intricacy enhances the overall musical experience rather
than detracting from it.

Each of these metrics provides a distinct perspective on the
evaluation of generated MIDI music, forming a comprehensive as-
sessment framework. Correct serves as a foundational criterion, as-
sessing alignment with compositional rules or intentions. Compiled
focuses on practical usability by evaluating whether the output is
executable. Complexity adds depth by measuring the intricacy and
variation within the compositions. Together, these metrics offer a
nuanced understanding of the strengths and limitations of different
generation models, providing insights into both qualitative and
practical aspects of generated MIDI music.

3.3 Evaluation Process
We used three specific prompts to generate MIDI scores in JSON
format. Each prompt was tested across 10 trials:
Prompt 1: GenerateMIDI scores in JSON notation that can be played
back by Tone.js

This baseline prompt tests the model’s ability to gen-
erate MIDI scores compatible with Tone.js, evaluating
its most fundamental capability for practical appli-
cation in web-based music playback and interactive
environments.

Prompt 2: Generate a MIDI JSON Bach chorale adhering counter-
point rules with four voices following a chord progression and
counterpoint harmony rules

This prompt assesses the model’s skill in generating
standard four-part structure adhering to strict coun-
terpoint rules, gauging its proficiency in classical mu-
sic composition.

Prompt 3: Generate a MIDI JSON complex piano piece with two
hands with syncopated rhythms and varied notes

This prompt challenges the model to create more so-
phisticated, multi-layered music, demonstrating its
capacity for intricate musical composition and rhyth-
mic complexity.

Each of the three prompts was executed 10 times using each
generation method. This means there were a total of 30 trials per
method, resulting in 90 trials in total. For each trial:

(1) The generation method was applied to the prompt.
(2) The output MIDI score in JSON format was evaluated based

on predefined metrics (correctness, compilation success, and
complexity).

6

Leveraging LLMs for Automated MIDI Generation
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

(3) The results were recorded and analyzed to determine the
performance and consistency of each method.

For generating the MIDI scores, we used the OpenAI API’s gpt-
3.5-turbo model for all three methods [17].

Our evaluation methodology investigates the generation of MIDI
scores using LLMs across three methods: Direct Generation, Code
Generation, and Rich Code Generation. We evaluated the generated
outputs using the Correct, Compiled, and Complexity metrics, pro-
viding a comprehensive analysis of the effectiveness and intricacy
of the generated music and code. All evaluation results are derived
from averaging the scores obtained across 10 trials to provide a
comprehensive analysis of the musical and coding outputs.

4 Results
I provide here an analysis of my evaluation through the data I col-
lected. I provide all code for the LLMmusic generator, Code Genera-
tions, andMIDI files in JSON format for Direct Generation andMIDI
files as JS Code Generation JSON format for code and rich Code
Generation in a Github repository at https://github.com/kazado/
tonejsmidijson in the JSON MIDI folder. The latest version of the
project may be used here: https://kazado.github.io/tonejsmidijson/.

In this evaluation, we measure three dimensions of our gen-
erational approach to assess our system: Correct, Compiled, and
Complexity, along with the Conceptual Correctness metric that we
introduced to address the limitations of standard evaluation meth-
ods. Each of these metrics offers a unique perspective on how well
the generation methods produce meaningful and usable musical
outputs.

4.1 Correct
The Correct metric evaluates how well the generated MIDI pieces
adhere to predefined musical criteria, such as harmonic coherence,
rhythmic consistency, and tonal balance. This is an importantmetric
to ensure that the output meets basic expectations for musicality
and structure.

Correct Generation Methods
Direct Generation Code Generation Rich Code Generation

Prompt 1 0.5 0.9 0.2
Prompt 2 0.7 0.6 0
Prompt 3 0.7 0.5 0

Table 1: Comparison of calculated results for the three gen-
eration methods for each of the three prompts for Correct
benchmark.

Direct Generation shows moderate consistency across prompts,
achieving scores ranging from 0.5 to 0.7. Code Generation performs
well with a high score of 0.9 for one prompt but exhibits variabil-
ity, scoring lower on others (0.6 and 0.5). Rich Code Generation
consistently scores lower across all prompts (0.2, 0, and 0), indi-
cating challenges in producing musically accurate outputs using
complex data structures. These results suggest that while Code Gen-
eration excels in certain scenarios, all methods require refinement
to enhance overall correctness in MIDI score generation.

4.2 Conceptual Correctness
The Conceptual Correctness metric measures whether the gener-
ated code adheres to the procedural logic and structural guidelines
outlined in the prompt. This metric is particularly useful for evaluat-
ing outputs generated using iterative constructs and randomization,
which may not conform to traditional musical qualities but align
with the intended compositional approach.

Prompt Complexity
Prompt 1 0.6
Prompt 2 0.8
Prompt 3 1

Table 2: Comparison of calculated Conceptual Correctness
results for each of the three prompts.

The results presented in Table 2 underscore the need for a more
context-sensitive approach, such as Conceptual Correctness, to
effectively evaluate Rich Code Generation techniques.

4.3 Compiled
The Compiled metric assesses whether the generated outputs can
successfully compile into executable MIDI scores. This is essen-
tial for ensuring that the generated music is usable in real-world
applications without errors during playback or execution.

Compiled Generation Methods
Direct Generation Code Generation Rich Code Generation

Prompt 1 0.8 0.9 0.8
Prompt 2 0.7 0.6 0.9
Prompt 3 0.7 0.6 1

Table 3: Comparison of calculated results for the three gen-
erationmethods for each of the three prompts for Compiled
benchmark.

Prompt 3 achieves the highest scores across all methods, with
Rich Code Generation achieving a perfect score of 1, indicating op-
timal compilation success in generating MIDI scores. Prompt 2 also
performs well, particularly with Rich Code Generation, achieving
a score of 0.9, highlighting the method’s capability to consistently
produce correctly compiled outputs. Prompt 1 shows strong perfor-
mance overall, with Code Generation achieving the highest score
of 0.9, closely followed by Direct Generation and Rich Code Gener-
ation at 0.8. These results showcase the effectiveness of Rich Code
Generation in ensuring accurate compilation of MIDI scores across
diverse compositional prompts.

4.4 Complexity
The Complexity metric quantifies the intricacy of the generated mu-
sic by counting the number of individual notes, rhythmic patterns,
and the overall variation in the composition. Higher complexity
may indicate a more sophisticated output but does not necessarily
correlate with better musical quality.

The results indicate varying levels of complexity generated by
each method for different prompts. Rich Code Generation con-
sistently produces the most complex musical outputs across all

7

https://github.com/kazado/tonejsmidijson
https://github.com/kazado/tonejsmidijson
https://kazado.github.io/tonejsmidijson/

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Zhang et al.

Complexity Generation Methods
Direct Generation Code Generation Rich Code Generation

Prompt 1 6.3 6.4 13.5
Prompt 2 16.7 15.7 40.4
Prompt 3 12 9.4 52.4

Table 4: Comparison of calculated results for the three gen-
erationmethods for each of the three prompts for Complex-
ity benchmark.

prompts, with scores of 13.5, 40.4, and 52.4 for Prompts 1, 2, and
3, respectively. This method leverages detailed instructions and
complex data structures to introduce nuanced musical elements,
resulting in compositions that exhibit higher levels of intricacy and
sophistication. In contrast, Direct Generation and Code Generation
exhibit lower complexity scores, indicating less intricate musical
compositions. These findings show the capability of Rich Code
Generation to generate musically complex outputs, demonstrating
its potential for creating sophisticated musical compositions that
align closely with predefined complexity metrics.

4.5 Summary of Findings
The analysis reveals significant performance variation across gener-
ation approaches. Direct Generation produced cohesive sequences
but struggled with length and pitch. Code Generation, while func-
tional, often resulted in harmonic clashes and simplistic structures.
Rich Code Generation provided complexity and length but com-
promised musicality and coherence. The results necessitate the
evaluation of multiple dimensions of generated code, including
harmonic consistency, melodic structure, duration, and pitch range,
to develop robust and efficient code generation systems.

4.6 Evaluations
The Direct Generation approach revealed several recurring issues
in the generated sequences. Length was a significant concern, as
sequences were often excessively short, typically spanning only
four beats. Harmonic consistency was generally maintained within
a C major chord framework, with both voices playing scales—one
starting from C and the other from G—creating a cohesive harmonic
structure. However, these sequences occasionally diverged from
traditional chord patterns. Voice interaction showed that while the
voices generally complemented each other, note durations were
overly prolonged, limiting sequences to just four notes. Chords from
common keys, such as C major and E minor, were used, with note
durations of either one or two beats. Yet, there were problems with
numerical pitches leading to odd-sounding low-pitched notes. A
consistent duration and pitch range with increasing pitch frequency
were observed, but sequences often deviated from typical chord
patterns, using a scale structure with random pitch increments. The
chord progression typically followed a I-I-ii-V pattern in C major,
although some deviations, like moving from a C major chord to
an A minor chord, introduced interesting tensions but were not
always diatonic to the key.

The evaluation of Code Generation focused on both functional-
ity and musicality. Functionally, the code reliably ran a function
containing the MIDI score in JS format, playable in Tone.js, and
returned the object for playback. Musically, a simple C major chord

structure was common, with one voice playing an ascending C
major scale and the other a descending F dominant 7th chord. De-
spite moments of harmonic dissonance, interactions between voices
generally resonated, though sustained note durations restricted se-
quences to merely four notes. Some sequences included a 2+ octave
scale with varied note durations (0.5, 1, 1.5, 2 beats), and voices
often used notes from common chords with C major as the tonic.
The generated sequences displayed a I-I6-V-IV7 chord progression
in Cmajor, but these progressions sometimes resulted in dissonance
and clashing chords. Additionally, some compositions were notably
shorter, often containing only one chord.

Rich Code Generation produced more complex and varied re-
sults but also introduced several challenges. The generatedmelodies
were often extremely dissonant, with no variation in note dura-
tion or discernible trends in pitches, a dissonance that persisted in
both singular and dual melodies. The pitch range could be altered
through prompt engineering, particularly the numerical ranges
used. The use of for loops and Math.random() enabled more com-
plex and longer compositions. Despite this complexity, the melodies
often lacked a common theme, with two voices failing to harmonize.
Some sequences started with dissonant melodies but branched into
multiple voices, showing moderate success in replicating two-voice
structures typical in piano music. There was minimal variation
in note duration, and no clear trends or structures in the pitches.
In some instances, the notes’ durations were strictly syncopated,
adding rhythmic interest but maintaining harmonic dissonance.
The generated sequences did not accurately represent the structure
of classical music or Bach chorales, as they lacked the expected
harmonic and melodic patterns.

4.7 Summary of Findings
The analysis reveals significant performance variation across gener-
ation approaches. Direct Generation produced cohesive sequences
but struggled with length and pitch. Code Generation, while func-
tional, often resulted in harmonic clashes and simplistic structures.
Rich Code Generation provided complexity and length but com-
promised musicality and coherence. The results necessitate the
evaluation of multiple dimensions of generated code, including
harmonic consistency, melodic structure, duration, and pitch range,
to develop robust and efficient code generation systems.

5 Discussion
In this section, we explore the potential applications of our findings
to the development of LLM-assisted tools for music generation and
composition, and outline future research directions in this domain.

5.1 Enhancing Music Composition Tools
The insights offered from our evaluation of LLM-generated music
sequences can significantly enhance existing music composition
tools. By understanding the strengths and limitations of different
generation approaches, developers can create more robust and user-
friendly interfaces that empower composers to produce music more
efficiently and creatively. For instance, integrating direct generation
methods can provide users with quick and intuitive means to gener-
ate musical ideas, while incorporating code generation techniques
can offer more granular control over the composition process [22].

8

Leveraging LLMs for Automated MIDI Generation
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

5.2 Human-Centered Evaluation
Amajor limitation of this study is the lack of comprehensive human-
centered evaluation, particularly involving feedback frommusicians
and composers. Such evaluation is critical for validating the practi-
cal utility and creative potential of LLM-generated music. Future
research should focus on conducting user studies with professional
musicians and composers to gather insights on how these tools
can fit into the creative process. Additionally, user feedback can
help fine-tune LLMs to meet the specific needs and preferences
of human composers, ensuring the generated music aligns with
artistic goals and enhances collaborative workflows.

5.3 Exploring New Musical Styles and Genres
The flexibility and adaptability of LLMs open exciting possibilities
for exploring new musical styles and genres. Training models on
diverse datasets that span different musical traditions and cultures
can foster cross-cultural exchange and collaboration, potentially
leading to the emergence of innovative hybrid genres and experi-
mental compositions. Moreover, incorporating user feedback and
preferences into the training process can enable LLMs to adapt and
evolve over time, reflecting changing trends and tastes in the music
industry [6].

5.4 Ethical Considerations
As AI-generated music becomes more widespread, several ethical
concerns must be addressed. First, there are questions surrounding
intellectual property and originality in AI-generated compositions.
Determining the ownership of music created by LLMs and the
potential overlap with existing compositions remains a complex
issue. Furthermore, the use of LLMs raises concerns about the
displacement of human composers in various sectors of the music
industry. It is essential to ensure that AI augments human creativity
rather than replacing it. Additionally, the biases present in the
training data used for these models could influence the music they
generate, potentially leading to cultural insensitivity or reinforcing
stereotypes. Future work must focus on ensuring that the training
data is diverse and representative of various musical traditions to
avoid perpetuating such biases. Addressing these ethical concerns
is crucial to fostering a responsible and inclusive approach to AI in
music generation.

5.5 AI Music Cognition
AI in music within therapeutic contexts offer personalized interven-
tions by analyzing patients’ responses to music, enhancing treat-
ment for conditions like anxiety and depression. Real-time adapta-
tion based on biometric data optimizes therapy effectiveness, while
expanding accessibility through mobile platforms benefits remote
and immobile populations. AI complements traditional methods
by providing data-driven insights and improving therapist-patient
interactions [21].

5.6 Future Directions
Several promising avenues for future research in LLM-assisted
music generation can be identified. First, utilizing JSON as an in-
termediary step in music generation can enhance control over the
composition process, incorporating domain-specific knowledge

and optimizing JSON-to-MIDI conversion to generate music that
transcends conventional stylistic boundaries. Integrating additional
modalities such as lyrics, images, and videos can enrich the music
generation process, creating more immersive and interactive user
experiences. Developing collaborative composition tools that allow
multiple users to interact with LLM-generated content in real-time
can facilitate remote collaboration amongmusicians and composers.
Addressing ethical considerations such as bias, fairness, and cul-
tural representation is crucial to ensure that LLM-generated music
is inclusive and respectful of diverse communities and perspec-
tives. Lastly, engaging end-users, including musicians, composers,
educators, and music enthusiasts, in the design and evaluation of
LLM-assisted tools is essential for creating solutions that meet their
needs and preferences [13, 15, 19].

By pursuing these research directions and fostering interdisci-
plinary collaborations between experts in machine learning, musi-
cology, cognitive science, and human-computer interaction, we can
unlock the full potential of LLMs to revolutionize music creation
and appreciation in the digital age.

References
[1] [n. d.]. JSON: JavaScript Object Notation. Available at https://www.json.org/.
[2] Adriano Baratè and other authors. 2016. Advances and perspectives in web

technologies for music representation. DigitCult-Scientific Journal on Digital
Cultures 1, 2 (2016), 1–18.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Matt Litwin, Scott Gray, Jack Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. Advances in
Neural Information Processing Systems 33 (2020), 18714–18732.

[4] Florian Colombo, Natasha Chen, Chris Donahue, Zachary Li, and Bryan Pardo.
2019. LakhNES: Improving multi-instrumental music generation with cross-
domain pre-training. Transactions of the International Society for Music Informa-
tion Retrieval (TISMIR) 2, 1 (2019), 97–108.

[5] Alexandre DuBreuil. 2020. Hands-On Music Generation with Magenta: Explore the
Role of Deep Learning in Music Generation and Assisted Music Composition. Packt
Publishing.

[6] Elena V. Epure, Guillaume Salha, Manuel Moussallam, and Romain Hennequin.
2020. Modeling the Music Genre Perception across Language-Bound Cultures.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).
Association for Computational Linguistics, Online, 4765–4779. https://doi.org/
10.18653/v1/2020.emnlp-main.386

[7] Franco Ghedini, François Pachet, and Pierre Roy. 2016. Creating Music and
Texts with Flow Machines. In Multidisciplinary Contributions to the Science of
Creative Thinking, Giovanni Corazza and Sergio Agnoli (Eds.). Springer, Singapore.
https://doi.org/10.1007/978-981-287-618-8_18

[8] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. 2017. DeepBach: a steerable
model for Bach chorales generation. In Proceedings of the 34th International
Conference on Machine Learning. 1362–1371.

[9] Dorien Herremans and Cheng-Hao Chuan. 2020. The emergence of deep learning:
new opportunities for music and audio technologies. Neural Computing and
Applications 32 (2020), 913–914. https://doi.org/10.1007/s00521-019-04166-0

[10] D. Herremans, C.-H. Chuan, and E. Chew. 2017. A functional taxonomy of music
generation systems. Comput. Surveys 50, 5 (2017), 1–30.

[11] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Curtis
Hawthorne, Andrew M. Dai, Matthew D. Hoffman, and Douglas Eck. 2018. Music
Transformer: Generating Music with Long-Term Structure. In Proceedings of the
International Conference on Machine Learning (ICML). 2410–2419.

[12] David Miles Huber. 2020. Modern Recording Techniques (9th ed.). Routledge.
225–259 pages.

[13] Eija Kaasinen et al. 2012. A User-Centric View of Intelligent Environments: User
Expectations, User Experience andUser Role in Building Intelligent Environments.
Computers 2, 1 (2012), 1–33.

[14] Li-Chun Lu et al. 2024. LLM Discussion: Enhancing the Creativity of Large
Language Models via Discussion Framework and Role-Play. arXiv preprint
arXiv:2405.06373 (2024).

9

https://www.json.org/
https://doi.org/10.18653/v1/2020.emnlp-main.386
https://doi.org/10.18653/v1/2020.emnlp-main.386
https://doi.org/10.1007/978-981-287-618-8_18
https://doi.org/10.1007/s00521-019-04166-0

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Zhang et al.

[15] Michele Newman, Lidia Morris, and Jin Ha Lee. 2023. Human-AI Music Creation:
Understanding the Perceptions and Experiences of Music Creators for Ethical
and Productive Collaboration. In Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR).

[16] OpenAI. 2019. OpenAI MuseNet. https://openai.com/index/musenet/.
[17] OpenAI. 2021. GPT-3.5 Turbo. https://beta.openai.com/docs/guides/gpt.
[18] OpenAI. 2021. OpenAI Codex. https://openai.com/index/openai-codex/.
[19] Sergio Oramas and et al. 2018. Multimodal Deep Learning for Music Genre

Classification. Transactions of the International Society for Music Information
Retrieval 1, 1 (2018), 4–21.

[20] Timothy Sexton. 2023. MuseNet. Music Reference Services Quarterly 26, 3–4
(2023), 151–153. https://doi.org/10.1080/10588167.2023.2247289

[21] Jingjing Sun, Jingyi Yang, Guyue Zhou, Yucheng Jin, and Jiangtao Gong. 2024. Un-
derstanding Human-AI Collaboration in Music Therapy Through Co-Design with
Therapists. In Proceedings of the CHI Conference on Human Factors in Computing
Systems.

[22] Yifei Zhang. 2024. Utilizing Computational Music Analysis And AI For Enhanced
Music Composition: Exploring Pre- And Post-Analysis. Educational Administra-
tion: Theory and Practice 30, 5 (2024), 269–282. https://doi.org/10.53555/kuey.
v30i5.2841

A Trials

Prompt Trial Correct
Direct Generation Code Generation Rich Code Generation

Prompt 1

Trial 1 1 1 0
Trial 2 0 1 0
Trial 3 0 0 0
Trial 4 1 1 0
Trial 5 1 1 0
Trial 6 0 1 1
Trial 7 1 1 1
Trial 8 0 1 0
Trial 9 0 1 0
Trial 10 1 1 0

Prompt 2

Trial 1 1 1 0
Trial 2 1 0 0
Trial 3 0 0 0
Trial 4 1 1 0
Trial 5 0 0 0
Trial 6 1 1 0
Trial 7 1 1 0
Trial 8 1 1 0
Trial 9 0 0 0
Trial 10 1 1 0

Prompt 3

Trial 1 0 1 0
Trial 2 1 1 0
Trial 3 0 0 0
Trial 4 1 1 0
Trial 5 1 1 0
Trial 6 1 0 0
Trial 7 1 0 0
Trial 8 1 0 0
Trial 9 0 0 0
Trial 10 1 1 0

Table 5: Table of trials for the three prompts and ten trials
each for Correct benchmark.

Prompt Trials

Prompt 1

0
1
0
1
1
1
0
1
0
1

Prompt 2

1
1
1
0
1
1
0
1
1
1

Prompt 3

1
1
1
1
1
1
1
1
1
1

Table 6: Table of trials for the three prompts and ten trials
each for Conceptual Correctness benchmark.

Prompt Trial Direct Generation Code Generation Rich Code Generation

Prompt 1

Trial 1 1 1 1
Trial 2 0 1 1
Trial 3 1 0 0
Trial 4 1 1 1
Trial 5 1 1 1
Trial 6 1 1 1
Trial 7 1 1 1
Trial 8 0 1 0
Trial 9 1 1 1
Trial 10 1 1 1

Prompt 2

Trial 1 1 1 1
Trial 2 1 0 1
Trial 3 0 0 1
Trial 4 1 1 0
Trial 5 0 0 1
Trial 6 1 1 1
Trial 7 1 1 1
Trial 8 1 1 1
Trial 9 0 0 1
Trial 10 1 1 1

Prompt 3

Trial 1 0 1 1
Trial 2 1 1 1
Trial 3 0 0 1
Trial 4 1 1 1
Trial 5 1 1 1
Trial 6 1 1 1
Trial 7 1 0 1
Trial 8 1 0 1
Trial 9 0 0 1
Trial 10 1 1 1

Table 7: Table of trials for the three prompts and ten trials
each for Compiled benchmark.

Prompt Trial Direct Generation Code Generation Rich Code Generation

Prompt 1

Trial 1 6 4 6
Trial 2 5 6 3
Trial 3 6 8 12
Trial 4 8 8 6
Trial 5 8 6 22
Trial 6 6 6 16
Trial 7 4 8 5
Trial 8 6 7 32
Trial 9 8 6 24
Trial 10 6 5 9

Prompt 2

Trial 1 16 16 64
Trial 2 16 25 64
Trial 3 16 16 16
Trial 4 16 16 12
Trial 5 23 8 64
Trial 6 16 16 32
Trial 7 16 16 8
Trial 8 16 16 16
Trial 9 16 12 64
Trial 10 16 16 64

Prompt 3

Trial 1 24 16 100
Trial 2 10 8 32
Trial 3 24 8 32
Trial 4 8 14 16
Trial 5 12 8 32
Trial 6 9 10 32
Trial 7 8 8 16
Trial 8 8 10 200
Trial 9 8 4 32
Trial 10 9 6 32

Table 8: Table of trials for the three prompts and ten trials
each for Complexity benchmark.

Received 16 August 2024; accepted 24 September 2024

10

https://openai.com/index/musenet/
https://beta.openai.com/docs/guides/gpt
https://openai.com/index/openai-codex/
https://doi.org/10.1080/10588167.2023.2247289
https://doi.org/10.53555/kuey.v30i5.2841
https://doi.org/10.53555/kuey.v30i5.2841

Deep Learning Based Volumetric Segmentation of Heart
Ventricles for Assessment of Cardiac Disease Using MRI

Anika Pallapothu
anikap@novaltech.org

Novaltech
Hayward, CA, USA

Abstract
Diagnosis of cardiovascular diseases through cardiac MRI imag-
ing plays a crucial role. Manual evaluation is time consuming and
prone to errors. With the help of deep learning, a lot of traction
has been developed for cardiac imaging diagnosis. In this study,
we present a fully automated pipeline for the segmentation of left
ventricle, right ventricle, myocardium, and classification of cardio-
vascular diseases into five classes using the cardiac MRI scans from
the ACDC dataset. We adopted Segnet architecture for segmenta-
tion and made a comparative analysis using 2D and 3D approach.
Best results were obtained using 2D approach with dice scores of
0.877(RV), 0.877(MYO), 0.937(LV) on the test set. We later on use the
segmentation outputs to extract quantitative features to develop
a robust classifier that gave us an overall accuracy of 85% on the
test set and 0.81,0.89 scores of precisions and recall. Our proposed
approach is computationally efficient and can be used for making
critical decisions during diagnosis.

Keywords
Cardiovascular, MRI, Heart Ventricles, Segmentation, Artificial In-
telligence, Deep Learning

ACM Reference Format:
Anika Pallapothu. 2024. Deep Learning Based Volumetric Segmentation
of Heart Ventricles for Assessment of Cardiac Disease Using MRI. In Pro-
ceedings of International Journal of Secondary Computing and Applications
Research (IJSCAR VOL. 1, ISSUE 1). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.5281/zenodo.14279490

1 Introduction
Cardiovascular diseases are one of the major factors that contribute
towards the death globally as per WHO [12]. Cardiovascular mag-
netic resonance (CMR) is often used for diagnosis and management
of cardiovascular diseases as it helps in giving a detailed and quan-
titative analysis of the parameters associated with heart’s anatomy.
Clinical changes can be quantitatively analyzed with the help of
CMR imaging using which doctors can monitor and strategize fur-
ther diagnosis. Manual delineation of quantitative features from
these images is often time-consuming, error-prone and introduces
inter-observer variability which can affect the diagnosis of patients
and becomes infeasible in real life scenario where the footfall of

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
IJSCAR VOL. 1, ISSUE 1
© 2024 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.

patients is high. With the advent of deep learning, a lot of progress
has been made in the automated analysis of medical imaging for
various tasks which in turn can help the doctors in treatment plan-
ning. Automated delineation of cardiac features from CMRI plays
a crucial role in analyzing the normal and abnormal parameters
at large scale. Convolution neural networks have shown to be of
great use especially for medical image segmentation-based tasks
that primarily uses encoder-decoder based architectures to localize
the features of interest. Current methods tend to use convolution-
based approach to segment heart anatomy features and then extract
quantitative features to come up with an automated diagnosis. In
this study, we will be using cardiac MRI data provided as part of
automated cardiac diagnosis challenge (ACDC) 2017 to segment for
left ventricle (LV), right ventricle (RV) and myocardium and also to
detect the presence of five types of classes namely normal, dilated
cardiomyopathy, hypertrophic cardiomyopathy, prior myocardial
infarction and abnormal right ventricle using deep learning and
machine learning models. Our aim will be to come up with a robust
deep learning framework using Segnet architecture for the segmen-
tation task and then build on the segmentation maps obtained to
build a predictive model using machine learning algorithms for
the prediction of five types of classes as mentioned. We will finally
validate our results against the ground truths provided from the
challenge and report our results using evaluation metrics.

2 Literature Review
A lot of advancement has been made in the field of medical image
segmentation and classification tasks recently, especially after the
development of Unet architectures [10]. In 2018 [6] combined Unet
and M-net [14] architecture to come up with an automated cardiac
segmentation model. Data augmentation in form of rotation was
used after which the final dice score improved significantly for right
ventricle. [2] developed a fully automated framework for segmenta-
tion of heart anatomical structures like left ventricles, right ventri-
cles and myocardium using multiple 2D and 3D convolutional tasks
using the cardiac MRI images provided as part of ACDC 2017 chal-
lenge. Out of various combination of networks, it was found that 2D
networks outperformed other 3D networks due to presence of large
slice thickness in terms of dice evaluation metric. [5]developed a
fully automated processing pipeline for segmentation and classifica-
tion using cardiac cine MRI data. An ensemble model of 2D and 3D
Unet architecture was used with dice loss used as optimizer to come
up with robust segmentation outputs. Geometrical features were
extracted from the segmentation outputs and further prediction
models were developed using an ensemble of classifiers in which
an overall accuracy of 92% was achieved. [11]proposed a multi-task
cardiac segmentation and diagnosis training from CMR images

11

https://doi.org/10.5281/zenodo.14279490

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Anika Pallapothu

that had a better convergence rate. Densenets [4] and Unet mod-
els are used for classification and segmentation training in which
the use of handcrafted features was completely avoided, which
is generally used in clinical diagnosis. Classification error was re-
duced from 32% to 22% by incorporating the segmentation training
block. [7] used Fourier analysis and circular Hough transform to
get the region of interest in cardiac MRI images and deployed a
FCN based architecture based on Densenets [4] along with long
skip and short-cut connections in the up-sampling path to avoid
feature map explosion. Multiscale processing of input was done at
initial layers of the network in parallel paths and later ensembled
as in inception networks. Weighted cross-entropy and dice loss was
used as optimizers. The proposed architecture achieved an overall
accuracy of 100% for cardiac disease diagnosis on the ACDC 2017
challenge.

3 Methodology
3.1 Dataset Description
The data in this study has been taken from ACDC 2017 challenge
that consists of cine-MRI scans acquired at University Hospital of
Dijon (France). The training set consists of almost 100 patient scans
with slice thickness varying from 5mm to 10mm, with each scan
having a corresponding end-systolic (ES) and end-diastolic(ED)
phase volumes. Ground truths masks are provided for myocardium,
left ventricle and right ventricle for ES and ED phases of each
patient. The data consists of equal distribution of normal, dilated
cardiomyopathy, hypertrophic cardiomyopathy, prior myocardial
infarction and abnormal right ventricle cases which have been
pre-annotated.

In this study, we will be using 70 cases for training, 10 cases for
validation and 20 cases for testing on which the final evaluation
metrics in terms of dice and accuracy will be reported. Five-fold
cross validation strategy will be adopted for model hyperparameter
tuning and finally the model results across all the models will be
ensembled for final reporting.

3.2 Segmentation
3.2.1 Data Preprocessing. In the segmentation part of the ACDC
challenge, we normalize the whole image to zero mean and unit
variance. For 2D segmentation, we do not resample the image in
the axial plane, but, select slices from the whole volume and resize
it to a fixed size. Each scan comprised of at least 18 slices from
both ED and ES phases, so a total of 700 slices was used as part of
our training and a total of 190 slices was used as part of testing.
Random augmentations like cropping, rotating, and flipping were
performed to avoid overfitting and also to overcome lack of train-
ing data. For 3D segmentation, we resample the whole volume to
1.25x1.25x10mm. We will randomly crop the images for a patch size
of 128*128*128 to be input to the model. From each scan comprising
of both ED and ES phases, two random crops were selected based
on a positive to negative ratio of 0.4 where probability of less than
0.4 will focus on patches containing regions where organ of interest
will be found and probability greater than 0.4 will focus on patches
containing regions organ of interest will not be found to make sure
the model sees multiple instances of each scan.

Figure 1: Standard Segnet architecture

3.2.2 Network Architecture. We approach the segmentation prob-
lem by using 2D and 3D based approaches. We will make use of
Segnet as proposed in [1], that works quite similar to traditional
Unet [10] which is a standard go-to algorithm that has been used
mainly for biomedical image segmentation problems. Unet’s ca-
pability lies in its architecture that has an encoder and a decoder
path that captures the context and then successfully manages to
localize it and also the skip connections that helps to efficiently
integrate low level features with high level semantic information.
This helps in getting better pixel level classification. Segnet works
quite similar to Unet but with small changes in the decoder path
that tends to use the pooling indices that have been obtained from
the encoder path to eliminate the need for learning to upsample.
This will help us in reducing parameter count and make the model
memory efficient than Unet. Also, as our main focus is to get the
overall classification accurate, we primarily use the segments as an
additional input later on to the classification model We will also
make slight changes in the encoding path as proposed in [9] in
2019. Here, the encoder will use ResNet blocks, where each bock
consists of two convolutions, normalization and ReLu followed
with a skip connection. Instance Normalization [13] will be used
instead of traditional batch normalization. We will make use of
four down sampling blocks and four up sampling blocks and initial
filters being set to 16 followed by a final softmax layer to get final
predictions (see Figure 1). We use the same architecture for 3D and
2D approaches with the difference being only in the convolution
dimensions. We used a weighted multiclass dice loss [8] which tries
to optimize the overlap of prediction and ground truth and also
overcomes the class imbalance problem.

𝐿𝑑𝑠𝑐 = − 2
|𝐾 |

∑
𝑘∈𝐾

∑
𝑖∈𝐼 𝑢

𝑘
𝑖
𝑣𝑘
𝑖∑

𝑖∈𝐼 𝑢
𝑘
𝑖
+∑

𝑖∈𝐼 𝑣
𝑘
𝑖

(1)

Both the approaches were trained for 300 epochs with five-fold
cross validation using Adam optimizer. Dice score efficient was
used as the evaluation metric which tends to measure the overlap
of two volumes. Final results were obtained after ensembling the
outputs from each fold and resampling to original voxel resolution.

Dice Score Coeffecient =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (2)

3.3 Cardiac disease classification
3.3.1 Feature Engineering. In the cardiac disease classification part
of ACDC challenge, our goal was to accurately classify the cardiac
MRI images into five classes namely, normal, dilated cardiomy-
opathy, hypertrophic cardiomyopathy, prior myocardial infarction,
and abnormal right ventricle. To achieve this purpose, we extract

12

Deep Learning Based Volumetric Segmentation of Heart Ventricles for Assessment of Cardiac Disease Using MRI
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

Figure 2: Segmentation results on test set using 2D Segnet
model at both ED and ES phases

cardiac features from the ground truth segmentations as proposed
in [7]. Primary features like myocardial wall thickness, volume of
right ventricle, left ventricle, myocardium at end diastole, and sys-
tole phases were extracted using the segmentation masks. Derive
features like ejection fraction, volumetric ratios, and variation pro-
file of myocardial wall thickness were obtained from the primary
features.

3.3.2 Classification. In addition to the primary and derived fea-
tures extracted, we used the cardiac MRI images at end diastole and
systole phases provided along with the segmentation outputs as
input to the classification model. Classification model used was an
ensemble of 3d resnet50 [3]and layer multilayer perceptron (MLP)
with two hidden layers, each containing 100 units. The output from
each branch was finally passed through a linear layer to get the
final output. A five-fold cross-validation approach was used along
with Adam optimizer. Each fold was trained for 20 epochs. Modal
value across all the folds was taken to obtain the final ensemble
prediction.

4 Results
We evaluated our segmentation model with respect to the ground
truth segmentation provided as part of the ACDC challenge on ED
and ES phases using dice score evaluation metric on the separately
reserved test set. We ensembled the final outputs obtained from
five folds to get the final output. 2D model clearly outperformed
the 3d model in terms of final dice scores. This can be attributed
to the presence of poor resolution of the z-axis. 2d model achieved
an overall dice score of 0.877, 0.877, 0.937 for right ventricle, my-
ocardium and left ventricle respectively whereas 3d model got a
dice score of 0.73, 0.725 and 0.852. Figure 2 shows the results of 2d
segmentation model on both ED and ES phases. Detailed results for
both 2d and 3d model in dice scores are tabulated in Table 1 and 2.

We used the 2d segmentation outputs to extract the features as
described in earlier section to perform classification on the test set.
Along with the extracted features, input images of both the phases
and their respective segmentation outputs from the 2d model were
given as input to the classification model. We ensembled the results
from all the folds and took the model value across the five folds to
get the final prediction.We achieved an overall accuracy of 85% on

Table 1: Dice scores of 2d segmentation model

Phase Dice
RV MYO LV

DCM ED 0.904 0.86 0.969
ES 0.808 0.866 0.96

HCM ED 0.926 0.908 0.957
ES 0.776 0.922 0.866

MINF ED 0.916 0.868 0.944
ES 0.788 0.9 0.933

RV ED 0.926 0.84 0.958
ES 0.876 0.863 0.896

NOR ED 0.95 0.87 0.96
ES 0.912 0.892 0.92

Table 2: Dice scores of 3d segmentation model

Phase Dice
RV MYO LV

DCM ED 0.743 0.667 0.875
ES 0.571 0.633 0.837

HCM ED 0.81 0.8 0.894
ES 0.65 0.687 0.662

MINF ED 0.837 0.742 0.915
ES 0.72 0.786 0.901

RV ED 0.788 0.738 0.917
ES 0.705 0.758 0.855

NOR ED 0.91 0.787 0.932
ES 0.762 0.81 0.855

the test set and 0.81,0.89 and 0.9 scores of precision, recall and auc-
score respectively. Confusion matrices are provided in figure 3. We
can see from figure 3, a clear difficulty in differentiating DCM from
MINF and RV patients, also, a normal patient being misclassified as
RV on the test set. Misclassifying DCM for MINF can have clinical
implications as both diseases have different diagnosis and also
misclassifying DCM for RV will have clinical implications too, as
DCM would require more focus on left ventricle functioning than
right ventricle as seen in RV.

5 Discussion
In this study, we presented a fully automated pipeline to classify car-
diovascular diseases into five classes on cardiac MRI images using
deep learning. We initially started out with a segmentation model
that would accurately segment left ventricle, right ventricle, and
myocardium using end diastole and end systole phases of cardiac
MRI images. We tested our approach with 2D and 3D models of
Segnet architecture with 2D model achieving the best dice score of
0.877, 0.877, 0.937 for right ventricle, left ventricle, and myocardium
respectively on the test set. We used the segmentation outputs to
extract quantitative features which were used as an additional input
to the ensembled classification model to predict the cardiovascular
diseases. We achieved an overall accuracy of 85% on the test set
with a recall score of 0.86. As our main focus is to improve recall
of each disease against normal, a normal case being misclassified

13

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Anika Pallapothu

Figure 3: Confusion matrix

as RV would mean giving extra precaution to patient than missing
the disease out. There were some cases of misclassification, which
can lead to significant errors in patient management and diagnosis.

Further improvements to this study can be made by using more
patient records apart from the one provided by the ACDC challenge
along with different cases of cardiovascular diseases. In addition to
images, patient’s clinical history can be considered in the future,
to get better results. Also, more robust segmentation architecture
can be used with different data processing techniques to yield bet-
ter results in terms of segmentation. As there were scenarios of
misclassification, accurate classification needs to be achieved for
ensuring appropriate patient disease management.

6 Conclusion
The present research can be elaborated by incorporating more
features and patient records to design a more robust model. The
patient’s data can be recorded over time and create a sequential
model to predict CAD with better accuracy. Along with prediction,
further research can lead to the identification of the underlying
cause of the disease so that better preventative measures can be
taken.

Acknowledgments
I would like to express my deepest gratitude to Dr. Michael Singer
for his invaluable guidance, insightful feedback, and continuous
encouragement throughout the research process. His expertise and
support were instrumental in the completion of this work.

References
[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39, 12 (2017), 2481–
2495.

[2] Christian F Baumgartner, Lisa M Koch, Marc Pollefeys, and Ender Konukoglu.
2018. An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR
Image Segmentation. In Statistical Atlases and Computational Models of the Heart.

ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held
in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017,
Revised Selected Papers. Springer, 111–119.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4700–4708.

[5] Fabian Isensee, Paul F Jaeger, Peter M Full, Ivo Wolf, Sandy Engelhardt, and
Klaus H Maier-Hein. 2018. Automatic Cardiac Disease Assessment on Cine-
MRI via Time-Series Segmentation and Domain Specific Features. In Statistical
Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges:
8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017,
Quebec City, Canada, September 10-14, 2017, Revised Selected Papers. Springer,
120–129.

[6] Yeonggul Jang, Yoonmi Hong, Seongmin Ha, Sekeun Kim, and Hyuk-Jae Chang.
2018. Automatic Segmentation of LV and RV in Cardiac MRI. In Statistical Atlases
and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th
International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017,
Quebec City, Canada, September 10-14, 2017, Revised Selected Papers. Springer,
161–169.

[7] Mahendra Khened, Varghese Alex Kollerathu, and Ganapathy Krishnamurthi.
2019. Fully Convolutional Multi-Scale Residual DenseNets for Cardiac Segmen-
tation and Automated Cardiac Diagnosis Using Ensemble of Classifiers. Medical
Image Analysis 51 (2019), 21–45.

[8] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. 2016. V-Net: Fully
Convolutional Neural Networks for Volumetric Medical Image Segmentation. In
2016 Fourth International Conference on 3D Vision (3DV). IEEE, 565–571.

[9] Andriy Myronenko. 2019. 3DMRI Brain Tumor Segmentation Using Autoencoder
Regularization. In BrainLes: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with
MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II.
Springer, 311–320.

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolu-
tional networks for biomedical image segmentation. InMedical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III. Springer, 234–241.

[11] Gerard Snaauw, Dong Gong, Gabriel Maicas, Anton Van Den Hengel, Wiro J
Niessen, Johan Verjans, and Gustavo Carneiro. 2019. End-to-End Diagnosis and
Segmentation Learning from Cardiac Magnetic Resonance Imaging. In 2019 IEEE
16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 802–805.

[12] World Health Organization. 2024. Cardiovascular Diseases. https://www.who.
int/health-topics/cardiovascular-diseases. Accessed: 2024-08-30.

[13] Yuxin Wu and Kaiming He. 2018. Group Normalization. In Proceedings of the
European Conference on Computer Vision (ECCV). 3–19.

[14] Xiao-Yun Zhou and Guang-Zhong Yang. 2019. Normalization in Training U-Net
for 2-D Biomedical Semantic Segmentation. IEEE Robotics and Automation Letters
4, 2 (2019), 1792–1799.

Received 01 September 2024; accepted 30 October 2024

14

https://www.who.int/health-topics/cardiovascular-diseases
https://www.who.int/health-topics/cardiovascular-diseases

Using a Feedback Loop for LLM-based Infrastructure as Code
Generation

Mayur Amarnath Palavalli
Irvington High School

Fremont, California, USA
mayur.palavalli@gmail.com

Mark Santolucito
Barnard College, Columbia University

New York, New York, USA
msantolu@barnard.edu

Abstract
Code generation with Large Language Models (LLMs) has helped
to increase software developer productivity in coding tasks, but has
yet to have significant impact on the tasks of software developers
that surround this code. In particular, the challenge of infrastructure
management remains an open question. We investigate the ability
of an LLM agent to construct infrastructure using the Infrastructure
as Code (IaC) paradigm. We particularly investigate the use of a
feedback loop that returns errors and warnings on the generated
IaC to allow the LLM agent to improve the code. We find that, for
each iteration of the loop, its effectiveness decreases exponentially
until it plateaus at a certain point and becomes ineffective.

Keywords
Infrastructure as Code, Large Language Models
ACM Reference Format:
Mayur Amarnath Palavalli and Mark Santolucito. 2024. Using a Feedback
Loop for LLM-based Infrastructure as Code Generation. In Proceedings of
International Journal of Secondary Computing and Applications Research
(IJSCAR VOL. 1, ISSUE 1). ACM, New York, NY, USA, 4 pages. https://doi.
org/10.5281/zenodo.14279492

1 Introduction
Infrastructure as Code (IaC) has fundamentally transformed the
way cloud infrastructure is managed. With IaC, developers can
provision and maintain their infrastructure through code. This
ensures automation and consistency in deploying infrastructure,
allowing for more effective scaling of operations. IaC also allows
teams to use version control on their infrastructure, making it easier
to collaborate and track changes [7]. However, a major challenge
with IaC is in the difficulty of writing correct code [1, 3, 10, 11, 16].

At the same time, Large Language Models (LLMs), as applied to
code generation, are enabling developers to be more effective. Code
generation benchmarks, such as HumanEval [2] and SWEBench [9],
have shown that LLMs are capable of assisting developers with
challenging programming tasks. It is then natural to seek to extend
the application of LLMs for code generation to IaC.

The combination of IaC and LLMs could allow for wider adoption
of IaC and more effective infrastructure management. However,
many questions remain open about the ability of LLMs to reason
about the complexities of IaC. In particular, there are many implicit

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
IJSCAR VOL. 1, ISSUE 1
© 2024 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.

rules about the semantics of cloud resources that are difficult to
reconcile when creating infrastructure through IaC.

In our work, we provide an analysis of the ability of LLMs to
generate AWS CloudFormation code. In particular, we investigate
the ability of an LLM to respond to errors and warnings generated
by cfn-lint [5], a tool for analyzing CloudFormation code. In
summary, the main contributions of this work are:

(1) The design of a feedback loop system for the generation of
CloudFormation code.

(2) A set of CloudFormation code generation benchmarks built
from industry-standard IaC problems.

(3) An evaluation of our feedback loop system on this bench-
mark, showing that LLMs struggle to fully reconcile all errors
in IaC generation.

2 Related Work
The application of LLMs in generating IaC has amassed significant
attention in recent years. Using LLMs for IaC comes with certain
challenges that make it inefficient in large systems. Srivatsa et
al. evaluate the LLM performance on functional correctness by
comparing with human-written code and deciding whether or not
it is an exact match. They found that the GPT-3.5-turbo model had
a success rate of between 50 and 60 percent, while the Codeparrot
model never exceeded 10 percent accuracy [18]. They also discuss
ethical and safety concerns of developing LLMs for more accurate
IaC generation.

A natural extension is the work of Ugare et al. who introduce
SynCode [20], a framework that uses grammar rules to enhance
LLM generation in formal coding languages. SynCode is able to
reduce 96.07 percent of syntax errors in Python and Go. It partic-
ularly shines in generating JSON, where it is able to eliminate all
syntax errors. This is achieved by utilizing context-free grammar
rules based on discrete finite automation.

An important area of investigation related to LLM code gener-
ation is constrained decoding [13, 21]. At a high level, grammar
constrained decoding (GCD) helps language models (LLMs) in pro-
ducing structured results without requiring additional fine tuning.
GCD utilizes grammars to guarantee that the generated sequences
follow a predefined structure. The technique greatly improves the
performance of LLMs in such settings without the need for expen-
sive task-specific training efforts. Since we are generating highly
structured JSON documents (CloudFormation files), GCD could be
a way to further optimize the results. However, the main goal of
our work is to provide an initial baseline accounting of the viability
of LLM code generation for IaC. We leave such optimizations to
future work.

15

https://doi.org/10.5281/zenodo.14279492
https://doi.org/10.5281/zenodo.14279492

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Palavalli et al.

Another critical challenge in LLM code generation is fixing syn-
tax errors. Tsai et al. address this with RTLFixer [19], a framework
designed to fix syntax errors in Verilog code. After finding that
55 percent of errors in LLM-generated Verilog code were syntax
errors, RTLFixer was designed to utilize Retrieval-Augmented Gen-
eration and ReAct (Reasoning and Action framework) techniques
to improve error correction. The framework achieves a 98.5 percent
success rate in fixing syntax errors after testing on 212 syntactically
invalid Verilog implementations.

These studies demonstrate the evolving role of LLMs in code
generation and highlight the importance of addressing syntactic
correctness and complexity.

3 Background

1 {" AWSTemplateFormatVersion ": "2010 -09 -09" ,

2 "Resources ": {

3 "MyEC2Instance ": {

4 "Type": "AWS::EC2:: Instance",

5 "Properties ": {

6 "InstanceType ": "t2.micro",

7 ...

Figure 1: An example AWS CloudFormation JSON template.

IaC is a diverse space with many existing languages and tools.
The most widely adopted tools are Terraform [8] and Amazon Web
Service’s CloudFormation [17]. Both Terraform and CloudForma-
tion files are specified as JSON (or YAML) documents, where the
various fields define properties of the cloud resource to be deployed.
These files are generally declarative - giving a specification of the de-
sired cloud infrastructure state. This is in contrast to some other IaC
languages, such as Pulumi, which allow users to write imperative
programs that construct operations that should take place upon the
user’s infrastructure [15]. An example of a CloudFormation JSON
is given in Fig. 1.

1 E1015 {'Fn::GetAZs ': ''} is not of type 'string '

2 Error location - path/to/my_iac.json :1:4575

Figure 2: An example error message from cfn-lint.

In this work, we focus solely on the LLM generation of AWS
CloudFormation [17] in JSON. We additionally use the AWS Cloud-
Formation linter cfn-lint [6]. cfn-lint allows us to validate
CloudFormation JSON templates against the resource provider
schemas provided by AWS as well as other best-practice IaC rules.
A schematically valid JSON template returns nothing when run
through cfn-lint. In any other case, cfn-lint returns errors
and/or warnings. The example error in Fig. 2 outlines the basic
structure of an error produced by cfn-lint. The error message
code starts with a letter followed by a string of numbers which
forms a error code. This is followed by a brief description of the
error and the line and character number at which it occurs.

4 Methodology
To describe our system, we first describe the methodology we used
for collecting a benchmark set, then we describe the feedback loop
that we constructed with cfn-lint. We make all of our code and
evaluation results available open-source: https://github.com/Mayur-
Palavalli/LLM-IaC-generation.

1 Create a AWS CloudFormation template that deploys a VPC

with a pair of private subnets spread across two

Availabilty Zones. It deploys a VPC Endpoint for

CloudFormation so an instance in the private subnet can

use cfn -signal for its CreationPolicy.

Figure 3: An example prompt from the official AWS Cloud-
Formation Template Schema repository.

4.1 Benchmark Set
To create a dataset of prompts, we took 33 descriptions of AWS
CloudFormation problems from the official AWS CloudFormation
Template Schema repository [4]. This repository converts exist-
ing Resource Specifications files into a formatted JSON (or YAML)
schema document which can be integrated in an IDE. An example
prompt from this repository is displayed in Fig. 3

4.2 Feeback Loop
We queried an LLM for a solution to this problem five times for each
description, yielding a dataset of 165 implemented CloudFormation
templates. We generated these templates in JSON format.

The tool cfn-lint is able to process a JSON CloudFormation
template, and returns errors describing schema violations, invalid
resource properties, and best practices. After each generation, we
run cfn-lint, and send the error message(s) and JSON template
back to the LLM, instructing it to modify the template to fix the
error generated by cfn-lint. In this manner, we create the feed-
back loop outlined in Fig. 4 that sends each JSON CloudFormation
file in our dataset to the LLM, each time providing the new file
and corresponding error message(s). This process is repeated ten
times. We hypothesized that the LLM would be able to fix all errors
produced by cfn-lint after a certain number of iterations.

Prompt

y
ew =>

Error/Warning CloudFormation
Message Files

—_ cfn-lint —)

Figure 4: A diagram of the feedback loop: we provide the
LLM with a prompt for an AWS CloudFormation file, which
is run through cfn-lint to produce error/warning mes-
sage(s) which are given back to the LLM.

16

https://github.com/Mayur-Palavalli/LLM-IaC-generation
https://github.com/Mayur-Palavalli/LLM-IaC-generation

Using a Feedback Loop for LLM-based Infrastructure as Code Generation
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

We keep track of the total number of errors and warnings across
all 165 files after each iteration of the feedback loop (for all 10 itera-
tions) in order to identify the point at which it becomes ineffective.
This process of running each file ten times through the feedback
loop is repeated six times. We choose to repeat it six times because
most of the error bars are narrow, indicating a small standard devia-
tion in the number of errors after each of the ten iterations. A small
standard deviation implies low variance, which demonstrates that
additional repetitions are unlikely to change the overall pattern.

5 Results

1 2 3 4 5 6 7 8 9 10
Iterations

0

25

50

75

100

125

150

175

Co
un

t

Errors and Warnings in CSV Files
Errors
Warnings

Figure 5: A histogram of errors over multiple cfn-lint feed-
back iterations showing error bars representing the distribu-
tion over six trials.

The entire process of iterating each file ten times through the
feedback loop is repeated six times. Fig. 5 summarizes the results
of all six sets of iterations in a bar graph by displaying the total
number of errors and warnings in all 165 JSON files after each
iteration. The graph’s plateau beginning at approximately the fifth
iteration indicates the point at which the feedback loop is no longer
effective.

The plateau is caused by the feedback loop’s inconsistency in
fixing errors. The LLM is unable to correctly fix certain individual
errors, which occasionally result in several new errors being pro-
duced from each old error between iterations. After approximately
five iterations, this anomaly is enough to yield no significant net
change in the number of errors across all 165 files. The slight peak
in the number of errors at the eighth and ninth iterations indicates
at least one of two things:

(1) An unusually high number of files generated more errors
than it had after the seventh iteration.

(2) Certain files had an unusually high increase in the number
of errors generated after the seventh iteration.

We predict the cause of this to be the LLMs incapability to properly
understand all the error messages from cfn-lint.

6 Discussion
Perfecting the use of LLMs in generating valid AWS CloudForma-
tion could enable developers to more quickly build the infrastruc-
ture they need for their systems. Automating the generation of

CloudFormation templates could drastically increases the speed
and efficiency of setting up complex cloud environments.

We do not use ChatGPT’s structured output mode [12]. Struc-
tured output mode allows users to provide the desired schema of
JSON output from ChatGPT in addition to the prompt. This mode
guarantees that the generated response matches the schema. How-
ever, for the purposes of CloudFormation generation this is not a
viable option. Not only is the complete CloudFormation schema is
over 200,000 lines long, it uses features of JSON schemas that are
outside the scope of ChatGPT’s structured output mode [12].

While our feedback loop dramatically increases the chance of
generating valid IaC, we still do not have a formal guarantee that
the generated code will be schematically valid. The remaining un-
certainty is enough for LLM code generation of IaC to remain hard
to use in large-scale development. There is a further question of se-
mantic validity. Semantic validity captures the idea that not only is
the CloudFormation deployable, but is also what the user wants (e.g.
an empty file is always schematically valid, but not semantically
valid). A schematically valid CloudFormation is not guaranteed to
be semantically valid. We are left with the task of ensuring schemat-
ically valid CloudFormation are also semantically valid before LLMs
are safe to use at large scale. This, however, is a challenging prob-
lem. Measuring semantic validity requires a way to determine how
well the generated infrastructure adheres to the prompt. There is
currently no simple tool like cfn-lint that does this.

6.1 Threats to Validity
One threat to the generalizability of our work is the question of the
extent to which we would see the same pattern if using a different
LLM. At the time of writing, OpenAI’s gpt-4o is among the best
LLMs capable of working with JSON. We believe that the use of a
different LLM for our work would the rate of decrease in the number
of errors, but not change the overall pattern. We hypothesize that
the plateau on the graph in Fig. 5 is due to the LLM’s inability to
reconcile error messages with the high-level intent of the prompt.
If this is true, we would need a structurally different LLM than
OpenAI’s gpt-4o model.

Another threat to generalizability is the extent to which the IaC
provider impacts the pattern of our results. AWS CloudFormation
is one of the most well-documented IaC services, and thus has
large corpus of training data related to it, making it well-suited to
generation with LLMs. Other well-documented IaC services, such
as Terraform, would likely yield similar results due to similar com-
patibility with LLMs. We hypothesize that using a less documented
services would likely still produce a plateau, but would yield more
slowly declining error bars due to a smaller training set of relevant
data.

Furthermore, our work utilizes only one method of receiving
feedback. We use error messages from cfn-lint as feedback to
demonstrate a proof of concept, but other means of testing and
receiving feedback could yield different results. The plateau, for
instance, might not exist with a more structured feedback strategy.

6.2 Future Work
We find that an LLM has a limited ability to respond to error mes-
sages and correct code in the context of IaC configurations. A future

17

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Palavalli et al.

task would be to customize error messages to a format that an LLM
like ChatGPT more clearly understands so errors can be be fixed
without creating new ones. The creation of a tool like cfn-lint to
check for semantic validity would take IaC generation via LLMs to
the next level, allowing for widespread commercial use.

In the context of IaC, Pulumi [15] is a an open-source IaC tool
that allows developers to define, deploy, and manage cloud infras-
tructure in familiar programming languages. All AWS services,
including CloudFormation, are fully supported by Pulumi. An espe-
cially useful tool is Pulumi AI [14], an experimental feature that al-
lows developers to generate IaC in familiar programming languages
via natural-language prompts. As far as we know, the Pulumi AI
tool does not incorporate any feedback during its generation from
static analysis tools such as cfn-lint. A future task might be to
use Pulumi AI to generate Pulumi code which maps to AWS Cloud-
Formation, which is run through cfn-lint, and send the generated
errors back to correct the Pulumi code.

7 Conclusion
Our investigation of the use of feedback loop for Infrastructure
as Code generation demonstrates the potential of agentic LLM
systems for real-world software development. Our results indicate
that using LLMs to generate IaC provides a significant advantage,
but not yet enough to be make it scale-able. The feedback loop
offers a method to increase the rate of successful IaC generation
from LLMs, as well as an opportunity for further research to fix
the anomalies that cause the loop to become eventually ineffective.
Even if OpenAI’s structured output mode were to support large
complex schema like that of AWS CloudFormation, there are still
issues of semantic correctness that are not captured in the schema
and only appear through checks with tools like cfn-lint.

References
[1] Claudia Cauli. 2022. Pre-deployment Description Logic-based Reasoning for

Cloud Infrastructure Security. (2022). University of Gothenburg. IT Faculty.
Dissertation.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. arXiv:2107.03374 [cs.LG]
https://arxiv.org/abs/2107.03374

[3] Michele Chiari, Michele De Pascalis, and Matteo Pradella. 2022. Static Analysis
of Infrastructure as Code: a Survey. In 2022 IEEE 19th International Conference
on Software Architecture Companion (ICSA-C). 218–225. https://doi.org/10.1109/
ICSA-C54293.2022.00049

[4] AWS CloudFormation. 2024. AWS CloudFormation Templates Collection. https:
//github.com/aws-cloudformation/aws-cloudformation-templates. [Accessed
02-09-2024].

[5] AWS CloudFormation. 2024. cfn-lint: CloudFormation Linter. https://github.com/
aws-cloudformation/cfn-lint. [Accessed 12-09-2024].

[6] Firefly. 2024. AIAC: Artificial Intelligence Infrastructure-as-Code Generator.
https://github.com/gofireflyio/aiac. [Accessed 02-09-2024].

[7] MIchele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio Palomba.
2019. Adoption, Support, and Challenges of Infrastructure-as-Code: Insights
from Industry. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 580–589. https://doi.org/10.1109/ICSME.2019.00092

[8] HashiCorp. 2024. Terraform. https://github.com/hashicorp/terraform. [Accessed
30-09-2024].

[9] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2023. Swe-bench: Can language models resolve
real-world github issues? arXiv preprint arXiv:2310.06770 (2023).

[10] Julien Lepiller, Ruzica Piskac, Martin Schäf, and Mark Santolucito. 2021. Ana-
lyzing Infrastructure as Code to Prevent Intra-update Sniping Vulnerabilities.
In Tools and Algorithms for the Construction and Analysis of Systems, Jan Friso
Groote and Kim Guldstrand Larsen (Eds.). Springer International Publishing,
Cham, 105–123.

[11] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and
Data Flow in Security Smell Detection for Infrastructure as Code: Is It Worth
the Effort?. In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). 534–545. https://doi.org/10.1109/MSR59073.2023.00079

[12] OpenAI. 2024. Introducing Structured Outputs in the API. https://openai.com/
index/introducing-structured-outputs-in-the-api/. [Accessed 02-09-2024].

[13] Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and
Loris D’Antoni. 2024. Grammar-Aligned Decoding. arXiv:2405.21047 [cs.AI]
https://arxiv.org/abs/2405.21047

[14] Pulumi. 2024. pulumi-ai. https://github.com/pulumi/pulumi-ai. [Accessed
12-09-2024].

[15] Pulumi. 2024. Pulumi Documentation. https://www.pulumi.com/docs/. [Accessed
12-09-2024].

[16] Feitong Qiao, Aryana Mohammadi, Jürgen Cito, and Mark Santolucito. 2024.
Statically Inferring Usage Bounds for Infrastructure as Code. arXiv preprint
arXiv:2402.15632 (2024).

[17] Amazon Web Services. 2024. What is AWS CloudFormation? https://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html. [Accessed
02-09-2024].

[18] Kalahasti Ganesh Srivatsa, Sabyasachi Mukhopadhyay, Ganesh Katrapati, and
Manish Shrivastava. 2024. A Survey of using Large Language Models for
Generating Infrastructure as Code. arXiv preprint arXiv:2404.00227 (2024).
https://arxiv.org/abs/2404.00227

[19] YunDa Tsai, Mingjie Liu, and Haoxing Ren. 2023. Rtlfixer: Automatically fixing
rtl syntax errors with large language models. arXiv preprint arXiv:2311.16543
(2023). https://arxiv.org/abs/2311.16543

[20] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagan-
deep Singh. 2024. SynCode: LLM Generation with Grammar Augmentation.
arXiv:2403.01632 [cs.LG] https://arxiv.org/abs/2403.01632

[21] Xi Ye, Lihu Chen, Juntao Chen, Weijia Shi, and Kai-Wei Chang. 2023. Grammar-
Constrained Decoding for Structured NLP Tasks without Finetuning. https:
//arxiv.org/abs/2305.13971. [Accessed 25-10-2024].

Received 30 September 2024; accepted 30 October 2024

18

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://doi.org/10.1109/ICSA-C54293.2022.00049
https://github.com/aws-cloudformation/aws-cloudformation-templates
https://github.com/aws-cloudformation/aws-cloudformation-templates
https://github.com/aws-cloudformation/cfn-lint
https://github.com/aws-cloudformation/cfn-lint
https://github.com/gofireflyio/aiac
https://doi.org/10.1109/ICSME.2019.00092
https://github.com/hashicorp/terraform
https://doi.org/10.1109/MSR59073.2023.00079
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://arxiv.org/abs/2405.21047
https://arxiv.org/abs/2405.21047
https://github.com/pulumi/pulumi-ai
https://www.pulumi.com/docs/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://arxiv.org/abs/2404.00227
https://arxiv.org/abs/2311.16543
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2305.13971

A Case Study on LLM Code Generation in Sonic Pi and Its
Impact on Student Attitudes towards Computer Science

Josch Wang
joschzw99@gmail.com
Manhasset High School

Manhasset, New York, USA

Abstract
Research has demonstrated that creating music and soundscapes
with tools like Sonic Pi can enhance the appeal of computer science
and music composition as fields of study. However, with current
advancements in artificial intelligence (AI), the nature of computer
science is evolving rapidly, particularly with AI’s ability to gen-
erate code from a single prompt. Similarly, AI technologies have
already begun to transform music composition by enabling the
generation of music. This study investigates whether live coding
with large language models (LLMs) such as ChatGPT and Copilot
influences perceptions of entering the fields of music composition
and computer science. Understanding the impact of AI is crucial, as
it increasingly shapes various domains of our lives. To explore this,
we instructed a random sample of high school students in the basics
of live coding, emphasizing the inclusion of AI tools. The results
indicate a positive shift in students’ attitudes toward programming
and music creation, suggesting that AI serves as a beneficial tool
rather than a detrimental one.

Keywords
LLM Code Generation, Live Coding, Sonic Pi, CS Education
ACM Reference Format:
Josch Wang. 2024. A Case Study on LLM Code Generation in Sonic Pi and
Its Impact on Student Attitudes towards Computer Science. In Proceedings
of International Journal of Secondary Computing and Applications Research
(IJSCAR VOL. 1, ISSUE 1). ACM, New York, NY, USA, 5 pages. https://doi.
org/10.5281/zenodo.14279494

1 Introduction
Programming has traditionally been perceived as a challenging
subject to introduce to K-12 students, especially because the out-
come of many programming tasks does not immediately manifest
in a way that is relevant to the students. Recent research has ex-
plored innovative approaches to introduce programming concepts
to novices, with live coding emerging as a promising method for
engaging learners through culturally responsive computing by com-
bining computer science and music composition [1, 4, 21]. Studies
have demonstrated that tools like Sonic Pi, designed for live cod-
ing, can increase engagement and foster positive attitudes towards
programming in young students [5, 7]. The ability to quickly create

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
IJSCAR VOL. 1, ISSUE 1
© 2024 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.

music with Sonic Pi, as compared to conventional programming
languages, make it particularly appealing to new learners. Concur-
rently, artificial intelligence (AI) is increasingly influencing various
fields, including computer science education. Inspired by prior work
on Sonic Pi and it’s impact on student attitudes [21], we aim to
explore the potential of AI to enhance live coding environments.

While there is a growing body of research on AI-assisted code
generation and, separately, on the pedagogical benefits of live cod-
ing, there remains a gap in understanding how AI, particularly
Large Language Models (LLMs), affects learning outcomes in the
context of live coding for computer science and music composition.
This study aims to address the following research question: What
impact do LLMs have on the learning process of computer science
andmusic composition through live coding? Investigating this ques-
tion is crucial, as the intersection of programming education and
live coding has had positive outcomes for many students. With
the introduction of LLMs, there is both potential for positive and
negative outcomes for students learning experiences. For example,
LLMs can provide help to generate code that students - getting stu-
dents to music creation more quickly. However, there is a concern
that LLMs may hinder students’ creativity and deep thinking, since
the LLM will provide the student with the answer, rather than them
having to struggle to find the answer themselves.

To explore this question, we conducted a two-day case study,
with each session lasting 90 minutes, to observe the effects of AI
integration on students’ learning experiences. In summary, the key
contributions of our work are as follows:

(1) We propose and evaluate a lesson plan that incorporates AI
tools for music coding tasks

(2) We assess the impact of LLMs on student creativity in the
context of live coding

(3) We analyze and interpret observed changes in student per-
formance and attitudes, providing potential explanations for
these outcomes

2 Related Work
2.1 Music and Computer Science Education
Research has consistently shown that students’ attitudes play a
crucial role in their motivation and learning effectiveness across
various educational contexts [6, 9, 22]. Programming skills are
increasingly seen as a core part of K-12 education, and are being
integrated into curricula [11, 12, 18]. With this, there is a need to
understand how to foster positive attitudes towards programming
to ensure these curricula are effective [3, 6, 16, 19].

19

https://doi.org/10.5281/zenodo.14279494
https://doi.org/10.5281/zenodo.14279494

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Josch Wang

2.2 Tools for Live Coding
Domain-specific programming platforms that combine music and
programming have shown potential in motivating fostering positive
attitudes towards programming [1, 2, 4, 17, 23]. These tools enable
culturally responsive curriculum - allowing students to connect
programming with a domain in which they can express themselves,
such as music[5, 7, 17, 20, 23].

Three major platforms that combine music and programming
for beginners at the school level are:

1. EarSketch: A tool that focuses on remixing pre-existing audio
loops using Python, JavaScript, or drag-and-drop code blocks [8].

2. TunePad is a platform that enables users to create music
through coding, primarily using Python, and a visual interface.
It provides tools for writing, sharing, and remixing musical compo-
sitions [10].

3. Sonic Pi: A integrate language and development environment
that uses a customized version of Ruby along with SuperCollider
for audio synthesis [1].

These platforms differ in their programming languages, design
approaches, and interfaces, but all aim to introduce programming
concepts through music creation. One major open question is how
these platforms, or others for music based programming education,
can be augmented with LLM code generation tools.

2.3 LLMs in Programming Education
The use of Large Language Models (LLMs) in programming educa-
tion is an emerging area of research. As AI technologies continue to
advance, tools like ChatGPT and GitHub Copilot are increasingly
being integrated into educational settings [15]. Thus far, research
has found that LLMs can be used to support students’ learning in
programming education. For example, Kazemitabaar et al. found
that LLMs can be used to support students’ learning in program-
ming education [13, 14].

3 Methodology
We designed a quantitative case study to answer the research ques-
tion: What effect do LLMs have on learning computer science and
music composition through live coding? A case study was best
suited for this question since it allows us to closely investigate the
changes of multiple people at once which is helpful considering
our goal.

For this case study, we designed a two day lesson plan for high
school students who were new to computer science or music. The
lesson plan was based upon prior work on Sonic Pi education [21],
however we reduced the scope of the lesson plan to fit into a two
day program rather than a three week program. The plan focused
on the basic syntax of Sonic Pi in addition to common live coding
practices with students free to ask any questions.

The lesson plan design is as follows:

(1) Day 1: students learned the basics of Sonic Pi including
looping and modifying samples to get familiar with live
coding concepts

(2) Day 2: students learned about the importance of randomness
in live coding to then create a final project with the assistance
of LLMs like ChatGPT

To make the lessons more engaging, we utilized demonstrations
to pique the interest of the students and when explaining specific
concepts, we arranged concrete examples that the students could
follow along to or ask questions about any confusion they may
have with the given examples.

3.1 Tooling
For our study, we utilized the programming environment Sonic
Pi[1] to teach students the basics of computer music and computer
science. Sonic Pi is a live coding environment that allows students
to create music and computer programs in a live setting. Because
we were particularly interested in the effect of LLMs on learning
computer science and music composition, we utilized Github Copi-
lot and ChatGPT to assist the students live coding. The lesson plan
instructed students to install the following software:

• Sonic Pi
• VSCode
• The Github Copilot VSCode Extension
• The Sonic Pi VSCode Extension1

3.1.1 Data Collection. To collect the necessary data to answer our
research question, we instructed participants to fill out a question-
naire to see their initial level and experience with both program-
ming and music. Our questionnaire was designed as a shortened
version of the questionnaire used in prior work [21]. It measured
how much programming the participants did in their lives and
the same was applied to music. The participants were then asked
to briefly describe their current excitement to learn more about
programming and music. The responses were then compared to
another questionnaire after the study to see if students made any
changes in the way that they think as a result of the study. The
second questionnaire included most of the questions from the first
questionnaire for the most direct comparison possible. For the ques-
tions themselves, they were mostly simple in order to decrease the
amount of unnecessary variability from a more specific question.
For example, “I’m excited to learn how to program”.

Students were recruited through direct outreach over email lists
and word of mouth. A total of 10 students participated in the study.
However, only 5 students completed the both days of the lesson
plan. Thus, our sample consisted of 5 people (2 male and 3 female).
The research site was online over Zoom. Additionally, the case
study method worked well in collecting data that could be used for
quantitative and qualitative analysis.

For the quantitative data, "Strongly Disagree" was represented
by the value of 1 while "Strongly Agree" represented the value of 5.
We then took the average of all the values submitted by the students
to get a mean that would be compared between the questionnaires.

4 Results
Three major categories were tested for change and two different
questions were asked to measure each category. The three main
categories to be looked into are enjoyment, future significance,
and difficulty. A sum of 2 would be considered as a "bad" score
in a category while a sum of 10 would be a "good" score. Each
different colored bar represents a student’s rating in each category.

1https://marketplace.visualstudio.com/items?itemName=s00500.sonic-pi-extension
20

https://marketplace.visualstudio.com/items?itemName=s00500.sonic-pi-extension

A Case Study on LLM Code Generation in Sonic Pi and Its Impact on Student Attitudes towards Computer Science
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

Students

R
at
in
g

0

2

4

6

8

10

Pre-Study Post-Study

Enjoyment

Figure 1: Total Enjoyment in Programming

Students

R
at

in
g

0

2

4

6

8

10

Pre-Study Post-Study

Future Significance

Figure 2: Future Relevance in Programming

Enjoyment was based on how fun the subject was and how excited
the students were to learn about it. Future significance was based
on how much the subject would be relevant in the future for the
student and if they would be willing to study it in college. Finally,
difficulty was based on how easy the subject felt and how well the
student understood what the subject involves.

Regarding Figure 1, a few students showed a visible increase
while others showed no change and a few also rated slightly lower
on the second questionnaire compared to the first. According to the
surveys, excitement is the main cause for the drop. This could be ex-
plained by the fact that people lose some excitement to learn some-
thing new if they already recently did so. However, any positive
increases were because of an increase in fun while programming.

Unfortunately, programming would be slightly less likely to be
chosen as a topic for study in college with the exception of one
outlier. This could be an effect of AI and the hindrance of creativity
making future studies in programming less worthwhile. However
the changes are minuscule so immediate conclusions cannot be
made regarding what students think of programming in the future
with regards to AI.

In Figure 3, students rated how easy it was to understand the
material and how much did they understand about topics involved

Students

R
at
in
g

0

2

4

6

8

Pre-Study Post-Study

Easiness

Figure 3: Perceived Difficulty in Programming

with programming. There was an overall increase in student under-
standing of programming with a few who saw no change. The net
positive outcome can be explained by the LLMs ability to generate
code which many probably believed made code easier to write and
understand with explanations.

Each participant involved in both sessions gave aworded account
of their computer and musical experience which acted as data for
qualitative analysis. We asked the students to "briefly describe
[their] feelings towards learning to code/program". One student
responded saying, "I don’t know much about it, so there is really
nothing to say". Her account matches up with her relatively low
ratings in terms of the three main categories. However, when asked
the same question again, the student showed a greater interest in
programming. As the same student said, "I felt that coding and
program is extremely interesting and using ai makes it so much
easier". Thus, it is evident that students felt more comfortable with
programming as supported by the quantitative data.

5 Discussion
Our results show that LLMs can be useful tools for learning com-
puter science and music composition through live coding. However,
we also found that students were not able to use the LLMs as ef-
fectively as we hoped. The main challenge was the hurdle of tool
installation and setup. We suspect that this was the main reason
why some students did not complete the both days of the lesson
plan. Furthermore, conducting the study online unfortunately can
result in a lower rate of participation, especially for the second day.
Some participants noted they did not see the reminder email we
had sent for the second session.

While students were able to install Sonic Pi, VSCode, and the
VSCode extensions, they had difficulties in getting the Sonic Pi
VSCode extension to work. Future work should consider how to
best support students in getting the necessary tools towork together
on a short timeline. One potential solution could be to create an
alternative way for students to interact with Sonic Pi - perhaps by
using a fully-self contained Sonic Pi extension that runs aWebAudio
Sonic Pi backed in VSCode itself. In addition to better preparation
of the necessary tools, a more effective method of communication
should be utilized. Besides employing emails, a text message or an

21

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Josch Wang

app that sends notifications for important events can also be put
to use with a higher chance of succeeding. For instance, clarifying
the schedules of all participating students before the study would
reduce the risk of dropouts by rescheduling.

Additionally, the students were not all able to install the Github
Copilot VSCode extension. Future work could consider other editors
that are AI-native and do not require additional extensions for LLM
integration, such as Cursor2.

6 Conclusions
This study sought to see what effect LLMs have on learning com-
puter science and music. The results shows a general increase in
some areas or a slight decrease or no change in others. Quantitative
and qualitative data provided useful information for answering this
question with the qualitative data revealing more significant results
about the three main categories of enjoyment, future significance,
and difficulty.

However, this data in this study is not statistically significant as
there are not enough students on both days to make an accurate
comparison. Despite the few visible changes, because of this lack
of data, no concrete conclusion can be reached. Nevertheless, with
more people and better preparation in the setup of tools, a study
with more reliable data would be possible. A control group of stu-
dents who won’t have access to AI to complete the same lesson
plan would also make for a better comparison to see effects of AI
directly.

Acknowledgments
The author would like to to thank Prof. Mark Santolucito for his
support in this research project.

References
[1] S. Aaron and A.F. Blackwell. 2013. From sonic Pi to overtone: Creative musical

experiences with domain-specific and functional languages. (2013), 35. https:
//doi.org/10.1145/2505341.2505346

[2] S. Aghaee, A.F. Blackwell, D. Stillwell, and M. Kosinski. 2015. Personality and
intrinsic motivational factors in end-user programming. (2015), 29–36. https:
//doi.org/10.1109/VLHCC.2015.7357195

[3] N. Anderson, C. Lankshear, C. Timms, and L. Courtney. 2008. ’Because it’s
boring, irrelevant and I don’t like computers’: Why high school girls avoid
professionally-oriented ICT subjects. Computers & Education 50, 4 (2008), 1304–
1318. https://doi.org/10.1016/j.compedu.2006.12.003

[4] J. Bell and T. Bell. 2018. Integrating computational thinking with a music
education context. Informatics in Education 17, 2 (2018), 151–166. https:
//doi.org/10.15388/infedu.2018.09

[5] P. Burnard, Z. Lavicza, and C.A. Philbin. 2016. Strictly coding: Connecting
mathematics and music through digital making. (2016), 345–350.

[6] C.S. Cheah. 2020. Factors contributing to the difficulties in teaching and learn-
ing of computer programming: A literature review. Contemporary Educational
Technology 12, 2 (2020), Article ep272. https://doi.org/10.30935/cedtech/8247

[7] L. Cheng. 2018. Teaching live coding of electronic dance music: A case study.
Dancecult 10, 1 (2018). https://doi.org/10.12801/1947-5403.2018.10.01.10

[8] S. Engelman, B. Magerko, T. McKlin, M. Miller, D. Edwards, and J. Freeman.
2017. Creativity in authentic STEAM education with EarSketch. (2017), 183–188.
https://doi.org/10.1145/3017680.3017763

[9] M. Fishbein and I. Ajzen. 1975. Belief, attitude, intention, and behavior: An
introduction to theory and research. (1975).

[10] J. Gorson, N. Patel, E. Beheshti, B. Magerko, and M. Horn. 2017. TunePad:
Computational thinking through sound composition. (2017), 484–489. https:
//doi.org/10.1145/3078072.3084313

[11] S. Grover, R. Pea, and S. Cooper. 2016. Factors influencing computer science
learning in middle school. (2016), 552–557. https://doi.org/10.1145/2839509.
2844564

2https://www.cursor.com/

[12] K. Hava and Z. Koyunlu Ünlü. 2021. Investigation of the relationship between
middle school students’ computational thinking skills and their STEM career
interest and attitudes toward inquiry. Journal of Science Education and Technology
(2021). https://doi.org/10.1007/s10956-020-09892-y

[13] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2023. How novices use LLM-based code generators
to solve CS1 coding tasks in a self-paced learning environment. In Proceedings of
the 23rd Koli Calling International Conference on Computing Education Research.
1–12.

[14] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. Codeaid: Evaluating
a classroom deployment of an llm-based programming assistant that balances
student and educator needs. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–20.

[15] Vassilka D Kirova, Cyril S Ku, Joseph R Laracy, and Thomas J Marlowe. 2024.
Software engineering education must adapt and evolve for an llm environment. In
Proceedings of the 55th ACM Technical Symposium on Computer Science Education
V. 1. 666–672.

[16] S.-C. Kong, M.M. Chiu, and M. Lai. 2018. A study of primary school stu-
dents’ interest, collaboration attitude, and programming empowerment in com-
putational thinking education. Computers & Education 127 (2018), 178–189.
https://doi.org/10.1016/j.compedu.2018.08.026

[17] C. Köppe. 2020. Program a hit – using music as motivator for introducing
programming concepts. (2020), 266–272. https://doi.org/10.1145/3341525.3387377

[18] S.Y. Lye and J.H.L. Koh. 2014. Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior 41 (2014), 51–61. https://doi.org/10.1016/j.chb.2014.09.012

[19] J. Margolis and A. Fisher. 2002. Unlocking the clubhouse: Women in computing.
MIT Press, Cambridge, Massachusetts, USA.

[20] T. McKlin, B. Magerko, T. Lee, D. Wanzer, D. Edwards, and J. Freeman. 2018.
Authenticity and personal creativity: How EarSketch affects student persistence.
(2018), 987–992. https://doi.org/10.1145/3159450.3159523

[21] Christopher Petrie. 2022. Programming music with Sonic Pi promotes positive
attitudes for beginners. Computers & Education 179 (2022), 104409.

[22] T. Teo. 2007. Perceived importance, enjoyment, and anxiety as correlates of
computer attitudes. Psychological Reports 100, 1 (2007), 127–135. https://doi.org/
10.2466/pr0.100.1.127-135

[23] D.L. Wanzer, T. McKlin, J. Freeman, B. Magerko, and T. Lee. 2020. Promoting
intentions to persist in computing: An examination of six years of the EarSketch
program. Computer Science Education 30, 4 (2020), 394–419. https://doi.org/10.
1080/08993408.2020.1714313

22

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1109/VLHCC.2015.7357195
https://doi.org/10.1109/VLHCC.2015.7357195
https://doi.org/10.1016/j.compedu.2006.12.003
https://doi.org/10.15388/infedu.2018.09
https://doi.org/10.15388/infedu.2018.09
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.12801/1947-5403.2018.10.01.10
https://doi.org/10.1145/3017680.3017763
https://doi.org/10.1145/3078072.3084313
https://doi.org/10.1145/3078072.3084313
https://doi.org/10.1145/2839509.2844564
https://doi.org/10.1145/2839509.2844564
https://doi.org/10.1007/s10956-020-09892-y
https://doi.org/10.1016/j.compedu.2018.08.026
https://doi.org/10.1145/3341525.3387377
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1145/3159450.3159523
https://doi.org/10.2466/pr0.100.1.127-135
https://doi.org/10.2466/pr0.100.1.127-135
https://doi.org/10.1080/08993408.2020.1714313
https://doi.org/10.1080/08993408.2020.1714313

A Case Study on LLM Code Generation in Sonic Pi and Its Impact on Student Attitudes towards Computer Science
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

A Materials
We list all the materials for the study below.

A.1 Lesson Plan
Our lesson plan covered two consecutive days of 1.5 hour sessions.

Day 1
Suggested Lesson Plan
Introduction: Talking generally about the nature of live coding
(10 min)
Part 1: Learn the basic Sonic Pi syntax necessary for live coding
(30 min)
Part 2: Learn how to modify samples to create a more elaborate
rhythm (40 min)
End: Students may ask any questions about the material (10 min)

Sonic Pi Syntax Learning Goals
• live_loop
• sample
• end
• sleep
• amp
• loop do
• times do
• rate
• pitch
• use_synth_defaults

Learning Objectives:
• All students are expected to utilize pre-recorded samples to
create short melodies and soundscapes.

• All students should be able to modify samples to create more
distinctive sounds.

Day 2
Suggested Lesson Plan
Introduction: Short review of Day 1 material (5 min)
Part 1: Learn how to add randomness in live coding to add inter-
esting variation (30 min)
Part 2: Students will work on an independent project on music
composition with their current knowledge of Sonic Pi. They may
ask questions during the process (45 min)
End: Students can voluntarily present their projects and share final
thoughts (10 min)

Sonic Pi Syntax Learning Goals
• rrand
• choose
• lists ([])

Learning Objectives:
• All students are expected to be creative and make unique
soundscapes utilizing randomization.

A.2 Survey Questions
The following questions were asked on a 7-point Likert scale.

1. I think programming is a lot of fun.
2. I think making music is a lot of fun.
3. I am excited to learn how to program.
4. I am excited to learn how to make music.
5. I think programming skills will be relevant in my future.
6. I think making music will be relevant in my future.
7. I might want to study programming in college.
8. I might want to study music composition in college.
9. I think programming is easy.
10. I think making music is easy.
11. I understand the kinds of activities involved with program-

ming.
12. I understand the kinds of activities involved with music

composition.
We additionally asked the following short answer questions.

These responses were not scored in our study, but only used as a
source of quotes and understanding of the participants’ experience.

1. Briefly describe your feelings towards learning to code/program.
2. Briefly describe your feelings towards learning how to make

music.
3. Have you had any experience in learning how to code before?

If so, how long?
4. If you have experience programming, what languages did

you use?
5. Have you ever received music education? If so, briefly de-

scribe what education and for how long (e.g., piano for 1
year).

6. Have you ever combined programming and music?

Received 07 October 2024; accepted 30 October 2024

23

Using Model Counting for Game Development:Quantifying
Difficulty of 2D Platformer Levels for Diverse Playable

Characters
Aditya Patil

aadtiyapatil@gmail.com
MIT Vishwashanti Gurukul
Pune, Maharashtra, India

Mark Santolucito
msantolu@barnard.edu

Barnard College, Columbia University
New York, New York, USA

Abstract
Game development is a field that benefits immensely from us-

ing Generative Artificial Intelligence. In particular, level design is
a labor-intensive task that can be assisted by AI. However, one
challenge in level design is ensuring the balance of the level. To fur-
ther support level designers, we propose a technique using model
counting for the automatic analysis of a level for multiple different
playable characters, in order to quantify the difficulty of the level
for each character. By using model counting we can analyze a level
without the need for human play testing. We implement a proto-
type of our tool and show the viability of this approach for a 2D
platformer.

Keywords
Game Design, Model Counting, Balance, Level Difficulty
ACM Reference Format:
Aditya Patil and Mark Santolucito. 2024. Using Model Counting for Game
Development: Quantifying Difficulty of 2D Platformer Levels for Diverse
Playable Characters. In Proceedings of International Journal of Secondary
Computing and Applications Research (IJSCAR VOL. 1, ISSUE 1). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.5281/zenodo.14279496

1 Introduction
Level design is a critical aspect of game development, however, it
is very labor-intensive. With the emergence of procedural content
generation (PCG) techniques, it is possible to automate or create
assistance, in the level design process. One of the main challenges
however in good level design is ensuring that the levels are balanced,
i.e. that they are neither too easy nor too difficult. In particular, one
of the challenges in balance for level design is ensuring that the
levels are balanced for different playable characters.

For example, in a 2D platformer, the levels should be balanced
for different characters with different abilities. In a game like Super
Mario Bros. [11], the levels are designed with Mario’s abilities in
mind. However, in a game like Super Mario Bros. 2 [9], the levels
are designed with the abilities of the four playable characters in
mind (Mario, Luigi, Toad, and Princess Peach). Each character has
different abilities - for example, Luigi can jump higher than Mario
but is slower overall. The levels in Super Mario Bros. 2 are designed

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC-BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.
IJSCAR VOL. 1, ISSUE 1
© 2024 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY-NC-ND 4.0 License.

to be balanced for all four characters, such that the difference in
abilities creates varied gameplay, but the overall challenge remains
mostly the same for each character.

The question we are interested in is: how can we automatically
generate balanced levels for different playable characters? While
there exist many techniques for generating levels, there are few
techniques for ensuring that the levels are balanced in this way.
Thus, the key challenge we tackle is in the quantification of level
difficulty for different playable characters. In particular, we aim to
develop a level difficulty quantification tool that can be run statically
- that is, without requiring players to play test the generated levels.
This static analysis for level difficulty is critical for enabling the
construction of a fully automated level generation system.

To do this, we propose using model counting to quantify the
difficulty of a level. Model counting is a technique for counting the
number of solutions to a logical formula. We encode the level as
a logical formula, where a satisfying assignment to the formula
represents a possible play through of the level. We then use model
counting to count the number of possible play through of the level.
The intuition is that the more possible play through a level has, the
easier it is.

We identify the main contributions of this paper as the following:
(1) We propose a novel approach to quantifying level difficulty

for different playable characters using model counting.
(2) We developed a tool that can automatically quantify the

difficulty of a level for different playable characters.
(3) We evaluate our tool on a game of Tic-tac-toe as a proof of

concept, and show that our tool can accurately quantify the
difficulty of the levels. We also identify the need for more
scalable model counting techniques and more usable tools
for model counting to enable further work in this direction.

2 Related Work
In modern video games balance refers to the relative difficulty

of a game for various playable characters [1]. The aim of designing
a game for good balance is to ensure that no character or strategy
has a massive advantage over others. A game is said to have good
balance when the success on a level is determined more strongly
by skill and strategy rather than inherent character strengths [11].

However, one of the ongoing challenges in video games is main-
taining a good balance among different playable characters, espe-
cially through regular updates and patches. Games with a wide
range of characters often find it hard to make sure each one is
equally useful and powerful, which can lead to some characters
being too strong while others are rarely used. This issue can be
seen in games like Overwatch [6], where the developers have to

24

https://doi.org/10.5281/zenodo.14279496

Using Model Counting for Game Development: Quantifying Difficulty of 2D Platformer Levels for Diverse Playable Characters
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

constantly tweak character abilities to ensure that no character
is too powerful or too weak [16]. One type of game update that
should maintain balance is level design (specifically, introduction
of new levels as an update).

Automated level design is an area that has seen significant inter-
est in recent years [4]. In automated level design, the main strategy
for ensuring balance is to use either play-testing or search-based
techniques. In the case of play-testing, the levels are generated and
then played by human testers to determine if they are balanced
- however this approach requires significant human effort and is
too slow to scale [13]. In the case of search-based techniques, the
levels are first generated by procedural algorithm, like Perlin noise.
Then a search algorithm (often A*) is used to evaluate the candidate
levels that have been generated by Perlin noise on measures such
as playability and difficulty [4]. After evaluating all the candidate
levels with A*, we can then select the one that demonstrates the best
playability. Specifically, A* quantifies level difficulty by evaluating
the optimal path through each level. It considers path length, where
longer paths would mean that the level has a higher difficulty or
short paths which would mean the level is comparatively easier.
Level difficulty quantification with A* also takes other factors into
account like obstacle density and path complexity. Obstacle density
is defined as the concentration of obstacles within a specific area or
along a path. Path complexity is the number of decision points as
each point adds to the challenge of finding the most optimal path
of finishing the level.

The main challenge in using search-based techniques that the
search algorithm may not fully explore the game space - there
may be paths through a given level that are unexplored because
the search algorithm did not find them [12]. In contrast, by using
model counting, we can quantify the difficulty of a level in a fully
automated way, and additionally ensure that we are exploring the
entire game space.

3 Background
To make this work self-contained, we give here a background on

model counting - the core techniques we use for our level difficulty
quantification. Model counting is a computational technique used
to determine the number of solutions or configurations that satisfy
a given set of constraints [9]. These constraints come in the form
of logical statements, often in SAT (Boolean Satisfiability) or SMT
(Satisfiability Modulo Theories).

3.1 SAT Solvers
Boolean Satisfiability (SAT) is a well-known NP-complete prob-

lem that asks if there is a satisfying assignment to a given Boolean
formula. Because of its importance in computer science, many SAT
solvers have been developed that can solve SAT problems efficiently,
even though it it an NP-complete problem in general [3].

To provide one example of the type of problem that a SAT solver
can solve, we can describe the available equipment of a NPC with
the following formula:

(𝑠ℎ𝑖𝑒𝑙𝑑 ∧ 𝑠𝑤𝑜𝑟𝑑 ∧ ¬𝑏𝑜𝑤) ∨ (¬𝑠ℎ𝑖𝑒𝑙𝑑 ∧ ¬𝑠𝑤𝑜𝑟𝑑 ∧ 𝑏𝑜𝑤)

This states that the NPC can either equip a shield and a sword,
or a bow, but cannot have, for example, a sword and a bow.

(𝑠ℎ𝑖𝑒𝑙𝑑 =⇒ 𝑠𝑤𝑜𝑟𝑑) ∧ (¬(𝑠𝑤𝑜𝑟𝑑 ∧ 𝑏𝑜𝑤))
A slightly modified version of this says that if the NPC has

a shield, the NPC must have a sword, and that the NPC cannot
have both a sword and a bow. We can then query a SAT solver for
satisfying assignments of these variables to generate configurations
of equipment for the NPC that obey these rules. For example, an
NPC may have only a bow, or a shield and sword, or nothing.

3.2 SMT Solvers
SMT (Satisfiability Modulo Theories) solvers extend the ability

of SAT solvers by providing what are called theories. These theories
can give the user the ability to write formulas that involve more
complex datatypes, for example number or arrays.

To encode a game level into an SMT (Satisfiability Modulo The-
ories) solver, we must first translate the game’s elements, rules,
mechanics, and objectives into formal logical constraints and vari-
ables. These constraints allow the solver to evaluate properties
such as the difficulty of the level or the feasibility of completing it.
Each game element—such as platforms, obstacles, enemies, and the
player’s position—must be represented in a manner that the SMT
solver can process and reason about effectively.

As an example again, we can look to generate valid configura-
tions of NPC equipment. This formula describes that the sum of
the power of the sword and the power of the shield must be 10:

𝑠𝑤𝑜𝑟𝑑𝑃𝑜𝑤𝑒𝑟 + 𝑠ℎ𝑖𝑒𝑙𝑑𝑃𝑜𝑤𝑒𝑟 = 10
Then, to find allowable game configurations, we can query an

SMT solver for satisfying assignments of these variables.

3.3 Model Counting
Model counting is a technique that extends SAT and SMT solvers

to count the number of satisfying assignments to a given formula[8].
To understand how model counting works, we first think through
the process of solving the previous SMT problem. The SMT solver
would a single possible solution to the formula, for example, 𝑠𝑤𝑜𝑟𝑑𝑃𝑜𝑤𝑒𝑟 =
5 and 𝑠ℎ𝑖𝑒𝑙𝑑𝑃𝑜𝑤𝑒𝑟 = 5. To then do model counting, we can add this
solution as a constraint to the formula - telling the SMT solver that
is has to find a different solution. Our new formula would look like
this:

(𝑠𝑤𝑜𝑟𝑑𝑃𝑜𝑤𝑒𝑟 + 𝑠ℎ𝑖𝑒𝑙𝑑𝑃𝑜𝑤𝑒𝑟 = 10) ∧
(𝑠𝑤𝑜𝑟𝑑𝑃𝑜𝑤𝑒𝑟 ≠ 5 ∨ 𝑠ℎ𝑖𝑒𝑙𝑑𝑃𝑜𝑤𝑒𝑟 ≠ 5)

In the next round, the SMT solver would find a different solution,
for example, 𝑠𝑤𝑜𝑟𝑑𝑃𝑜𝑤𝑒𝑟 = 3 and 𝑠ℎ𝑖𝑒𝑙𝑑𝑃𝑜𝑤𝑒𝑟 = 7. It will continue
this process until it finds all the possible solutions to the logical
formula.

4 Model Counting Games
We provide an running example of our strategy for level difficulty

quantification with Tic-Tac-Toe to show the basic technique. As
Tic-Tac-Toe is well studied from a game theory and combinatorics
perspective, it serves as a good a proof of concept domain.

25

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Aditya Patil and Mark Santolucito

The first step is to encode the semantics of the game. For this,
we have the following constraints:

• Grid Setup (cf. Sec 4.1: Each cell must either be empty, an
"X", or an "O" but not both.

• Turn Alternation (cf. Sec 4.2: The number of "X’s” and "O’s"
on the board must differ by at most 1 to ensure correct turn
alternation.

• Winning Condition (cf. Sec. 4.3: Only one player can win,
either "X" or "O", but not both simultaneously.

To encode this constraints into an SMT solver, we need to turn
these natural language constraints into first order logic. To do this,
we the Python bindings for the Z3 solver[5].

4.1 Setting Up the Grid

1 !pip install z3-solver

2 from z3 import *

3

4 board_size = 3

5 Cells = [[Int(f"Cell_{i}_{j}") for j in range(board_size)

] for i in range(board_size)]

6 solver = Solver ()

7

8 # Each cell can be 0 (empty), 1 (X), or 2 (O)

9 for i in range(board_size):

10 for j in range(board_size):

11 solver.add(Cells[i][j] >= 0, Cells[i][j] <= 2)

This code initializes our solver and a model of the board, where
each cell in the board can be in one of three states.

The solver then adds constraints ensuring that each cell on the
board is either empty, occupied by X or O (but not both), enforcing
that no cell can be occupied by both players simultaneously.
4.2 Turn Alternation

1 num_X = Sum([If(Cells[i][j] == 1, 1, 0) for i in range(

board_size) for j in range(board_size)])

2 num_O = Sum([If(Cells[i][j] == 2, 1, 0) for i in range(

board_size) for j in range(board_size)])

3

4 # The number of X's and O's should differ by at most 1,

and X goes first

5 solver.add(num_X - num_O <= 1)

6 solver.add(num_O - num_X <= 0)

Next, we add constraints to ensure that the number of moves
made by each player (’X’ and ’O’) follows the standard turn-taking
rules of Tic-Tac-Toe. First, it counts how many times ’X’ and ’O’
have been placed on the board. Then, it adds rules to ensure the
game progresses correctly: ’X’ must always go first, and the number
of moves made by ’X’ and ’O’ can differ by at most one. This ensures
that players alternate turns properly, with ’X’ never having more
than one extra move over ’O’, and ’O’ never having more moves
than ’X’. These constraints prevent invalid game states from being
considered. Here we are leveraging the theory of Linear Integer
Arithmetic of the SMT solver.
4.3 Defining the Winning Condition

1 def is_winner(player_value):

2 row_wins = [And([Cells[i][j] == player_value for j in

range(board_size)]) for i in range(board_size)]

3 col_wins = [And([Cells[i][j] == player_value for i in

range(board_size)]) for j in range(board_size)]

4 diag1_win = And([Cells[i][i] == player_value for i in

range(board_size)])

5 diag2_win = And([Cells[i][board_size - i - 1] ==

player_value for i in range(board_size)])

6 return Or(*row_wins , *col_wins , diag1_win , diag2_win)

7

8 # Both players cannot win simultaneously

9 solver.add(Not(And(is_winner (1), is_winner (2))))

10

11 # If X wins , X has played one more move than O

12 solver.add(Implies(is_winner (1), num_X == num_O + 1))

13

14 # If O wins , X and O have played the same number of moves

15 solver.add(Implies(is_winner (2), num_X == num_O))

The is_winner function checks if a given player (X or O) has
won the game by forming a complete row, column, or diagonal.
It returns True if any of these win conditions are met. We also
add constraints to ensure the game ends when a player wins. In
particular, if someone has won, no further moves are made after
the win.
4.4 Model Counting

While tools for model counting exist [2, 14, 15], they are largely
focused on SAT solving, and do not work well with Python Z3
bindings. To keep this proof of concept work simple, we want to
use Python Z3 bindings, but this means we needed to implement our
own model counting technique. To do this we use the below code
that creates additional constraints to avoid game configurations
that have already been found. It does this by comparing each cell’s
value in the current model (board) and generating a constraint that
forces at least one cell to have a different value in the next solution,
ensuring uniqueness.

1 # Exclude the current model from future iterations

2 current_model_constraints = []

3 for i in range(board_size):

4 for j in range(board_size):

5 val = model.evaluate(Cells[i][j])

6 current_model_constraints.append(Cells[i][j] ==

val)

7 solver.add(Not(And(current_model_constraints)))

This is the most basic approach to model counting. It does not
scale well, which is why model checking is an active area of re-
search [7], however for the purposes of our work, this is sufficient.

4.5 Assessing Level Difficulty

1 difficulty_o = 1 - (o_wins / total_moves)

2 difficulty_x = 1 - (x_wins / total_moves)

Finally, to use these model counting results to estimate level
difficulty between O and X, we compare the number of winning
paths for each player to the total number of outcome possibilities for
a game. This gives us a sense of how often a random play strategy
would win for each player.
Results:
Total number of valid configurations: 5478
Total number of X win options: 626
Total number of O win options: 316
Difficulty for O: 0.9423
Difficulty for X: 0.8857

26

Using Model Counting for Game Development: Quantifying Difficulty of 2D Platformer Levels for Diverse Playable Characters
IJSCAR VOL. 1, ISSUE 1, Dec 2024,

The system generates 5478 different valid Tic-Tac-Toe configu-
rations - matching established literature in combinatorics [10].

In summary, the difficulty for player ’X’ is calculated to be 0.9423,
while O is 0.8857. This suggests that ’X’ has a higher chance of
winning with a random strategy, thus facing an easier path to
victory. This aligns with the notion of the first-move advantage
present in Tic-Tac-Toe.

Through this example, we have shown we model counting can
be used to assess game difficulty for different playable characters
with certain constraints. By changing the constraints for differ-
ent playable characters, such as player ’O’ and player ’X’, we can
quantify how difficult a level is based on the given constraints

5 Model Counting for a 2D Platformer
We now extend our prior example from Tic-Tac-Toe to a 2D plat-

former game. Similar to how we encoded player position, winning
conditions, and the number of possible solutions as variables in
Tic-Tac-Toe, a similar approach can be used in a 2D platformer
by encoding multiple variables such as character abilities, enemy
behavior, level layout, and collectibles.

In this section, we explore how different constraints, such as
movement rules and enemy avoidance, can be encoded and solved
using an SMT solver. We also demonstrate how model counting
can help estimate the complexity of different characters’ paths to a
goal.

5.1 Grid Setup and Character Movement
Our platformer is represented as a grid with rows and columns.

Each character starts at an initial position and attempts to reach
a predefined goal. Different characters have distinct movement
abilities, which are modeled using logical constraints.

For instance, in the case of the Tank character, movement is
restricted to horizontal directions (left and right), while the Agility
character has the ability to move both horizontally and vertically,
making it more versatile. The initial setup for the grid and the
movement rules for each character are shown in the following
code:

1 # Define the grid dimensions and parameters

2 rows , cols = 2, 4

3 moves = 5

4 initial_position = [0, 0]

5 goal_position = [0, 3]

6

7 # Characters ' movement abilities

8 movement_rules = {

9 'Tank': [(0, 0), (0, -1), (0, 1)], # Can stay or

move left/right

10 'Agility ': [(0, 0), (0, -1), (0, 1), (-1, 0), (1, 0)

], # Can move in all directions

11 }

We then encode the constraints for each character’s movement
across the grid, ensuring that they can only move according to their
abilities while avoiding obstacles such as enemies.

5.2 Enemy Avoidance and Path Constraints
A key challenge in platformer games is avoiding enemies or

obstacles. In our model, we define enemy positions as static cells

on the grid. Characters like the Agility type can have additional
constraints to avoid these enemy cells at each time step.

1 # Define enemy positions (static positions on the map)

2 enemy_positions = [(0, 1), (1, 3)] # Example enemy

positions

3

4 # Avoid enemies while moving

5 add_constraints('Agility ', movement_rules['Agility '],

avoid_enemies=True)

This allows the solver to generate valid paths for characters
by avoiding cells that contain enemies, adding an extra layer of
complexity to the solution space.

5.3 Model Counting and Path Enumeration
Just as in the Tic-Tac-Toe example, we use model counting to

enumerate all possible valid paths for each character to reach the
goal. The solver iterates through each possible configuration, en-
suring that every path found is unique. We also calculate the total
number of paths to give a sense of how many valid solutions exist
for each character.

1 # Find paths for each character

2 tank_paths = find_paths('Tank', max_paths =3)

3 agility_paths = find_paths('Agility ', max_paths =3)

The model counting process helps quantify how many paths are
available for each character based on their movement abilities and
constraints. For example, characters with more versatile movement
rules, such as Agility, typically have more potential solutions, while
characters like Tank, with more limited movement, may have fewer
solutions.

5.4 Level Difficulty Assessment
To assess the relative difficulty of the level for each character, we

can compare the number of valid paths that exist for them. Similar
to the Tic-Tac-Toe example, a character with fewer valid paths will
likely find the level more challenging, whereas a character with
many paths will have an easier time.

For this proof-of-concept platformer, we generated several paths
for the Tank and Agility characters. Below are the results:
Total number of valid paths for Tank: 3
Total number of valid paths for Agility: 1

This method of model counting provides a quantitative way to
measure and compare the difficulty of different characters navigat-
ing the same level. By encoding movement abilities and constraints
in an SMT solver, we can systematically explore and analyze the
solution space for complex game mechanics.

To test the scalability of this method, we run an experiment
where we vary the size of the board and the number of allowed
moves. We ran this on a Google Colab online environment, which
had an Intel Xeon CPU @ 2.20GHz and 12GB of RAM. We run on
boards of increasing size, with the classic dimensions of a 2D side-
scrolling platformer - a small height with a long board. The results,
as shown in Fig. 1, show that while there is an exponential trend (as
expected, as the model counting problem is of #SAT complexity),
the values are not unreasonable. The classic 2D platformer, World
1-1 of Super Mario Bros, is 14 tiles tall and 211 tiles long. Although
our implementation is too inefficient to handle this (already running

27

IJSCAR VOL. 1, ISSUE 1, Dec 2024,
Aditya Patil and Mark Santolucito

0 10 20 30 40 50
Elapsed Time (seconds)

3x5, 5 moves

3x5, 15 moves

4x6, 6 moves

4x6, 16 moves

5x7, 7 moves

5x7, 17 moves

6x10, 10 moves

6x10, 20 moves

6x15, 15 moves

6x15, 25 moves

6x20, 20 moves

6x20, 30 moves

6x25, 25 moves

6x25, 35 moves

Gr
id

 S
ize

 a
nd

 M
ov

es

Performance of Character Pathfinding with Different Grid Sizes and Move Counts

Figure 1: Scalability test of model counting for game level balancing

for 50 seconds on a board of 6 tiles by 25 tiles), with a proper model
counting tool [7], we expect this would be possible.

The full implementation of this 2D platformer model counting ex-
ample is available open-source here: https://github.com/adinotfound11/
ModelCounting/blob/main/Tic_tac_toe_Z3.ipynb.

6 Conclusion
We have presented a novel approach to quantifying the difficulty

of 2D platformer levels for diverse playable characters through
the use of model counting. By encoding game mechanics and con-
straints into logical formulas and applying model counting tech-
niques, we are able to give a measure of difficulty of a level without
the need for extensive human playtesting. We envision this tool
being used by level-designers to confirm the balance of levels, either
manually designed or designed with the assistance of AI. Ideally,
such a tool would be integrated directly into the workflow of the
developers. Although further studies are required to validate this
approach from a user-testing perspective, we offer model counting
as a a first step towards more automated level generation while
ensuring game balance.

References
[1] Alexander Becker and Daniel Görlich. 2019. Game Balancing – A Semantical

Analysis.
[2] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. 2013. A scalable

approximate model counter. In Principles and Practice of Constraint Programming:
19th International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013.
Proceedings 19. Springer, 200–216.

[3] Koen Claessen, Niklas Een, Mary Sheeran, and Niklas Sorensson. 2008. SAT-
solving in practice. Proceedings - 9th International Workshop on Discrete Event
Systems, WODES’ 08, 61 – 67. https://doi.org/10.1109/WODES.2008.4605923

[4] Eric Dallmeier. 2018. Automated Level Generation for General Video Games. Ph. D.
Dissertation. https://doi.org/10.13140/RG.2.2.24292.71045

[5] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver.
Tools and Algorithms for the Construction and Analysis of Systems 4963, 337–340.
https://doi.org/10.1007/978-3-540-78800-3_24

[6] Blizzard Entertainment. 2019. Overwatch 2. https://overwatch.blizzard.com/en-
us/

[7] Johannes K Fichte, Markus Hecher, and Florim Hamiti. 2021. The model counting
competition 2020. Journal of Experimental Algorithmics (JEA) 26 (2021), 1–26.

[8] Carla Gomes and Ashish Sabharwal. 2006. Model Counting: A New Strategy
for Obtaining Good Bounds. Proceedings of the National Conference on Artificial
Intelligence 1.

[9] Carla P Gomes, Ashish Sabharwal, and Bart Selman. 2021. Model counting. In
Handbook of satisfiability. IOS press, 993–1014.

[10] Immanuel (https://math.stackexchange.com/users/93547/immanuel). [n. d.]. Tic-
TacToe State Space Choose Calculation. Mathematics Stack Exchange.
arXiv:https://math.stackexchange.com/q/486548 https://math.stackexchange.
com/q/486548 URL:https://math.stackexchange.com/q/486548 (version: 2018-05-
23).

[11] Florian Rupp. 2023. Learning the Generation of Balanced Game Levels.
DC@KI2023: Proceedings of Doctoral Consortium at KI 2023. , 40–49 pages.
https://doi.org/10.18420/ki2023-dc-05

[12] Noor Shaker, Julian Togelius, and Mark Nelson. 2016. Procedural Content Genera-
tion in Games. https://doi.org/10.1007/978-3-319-42716-4

[13] Noor Shaker, Georgios Yannakakis, and Julian Togelius. 2010. Towards Automatic
Personalized Content Generation for Platform Games. Proceedings of the 6th
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
AIIDE 2010.

[14] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. 2019. GANAK:
A Scalable Probabilistic Exact Model Counter.. In IJCAI, Vol. 19. 1169–1176.

[15] Mate Soos, Stephan Gocht, and Kuldeep S Meel. 2020. Tinted, detached, and lazy
CNF-XOR solving and its applications to counting and sampling. In International
Conference on Computer Aided Verification. Springer, 463–484.

[16] Xiaofang Zhong and Jinjie Xu. 2022. Measuring the effect of game updates on
player engagement: A cue from DOTA2. Entertainment Computing 43 (06 2022),
100506. https://doi.org/10.1016/j.entcom.2022.100506

Received 14 October 2024; accepted 12 November 2024

28

https://github.com/adinotfound11/ModelCounting/blob/main/Tic_tac_toe_Z3.ipynb
https://github.com/adinotfound11/ModelCounting/blob/main/Tic_tac_toe_Z3.ipynb
https://doi.org/10.1109/WODES.2008.4605923
https://doi.org/10.13140/RG.2.2.24292.71045
https://doi.org/10.1007/978-3-540-78800-3_24
https://overwatch.blizzard.com/en-us/
https://overwatch.blizzard.com/en-us/
https://arxiv.org/abs/https://math.stackexchange.com/q/486548
https://math.stackexchange.com/q/486548
https://math.stackexchange.com/q/486548
https://doi.org/10.18420/ki2023-dc-05
https://doi.org/10.1007/978-3-319-42716-4
https://doi.org/10.1016/j.entcom.2022.100506

	Abstract
	1 Introduction
	2 State of the Art
	2.1 Background
	2.2 Related Work

	3 Methodology
	3.1 Generation Methods
	3.2 Evaluation Metrics
	3.3 Evaluation Process

	4 Results
	4.1 Correct
	4.2 Conceptual Correctness
	4.3 Compiled
	4.4 Complexity
	4.5 Summary of Findings
	4.6 Evaluations
	4.7 Summary of Findings

	5 Discussion
	5.1 Enhancing Music Composition Tools
	5.2 Human-Centered Evaluation
	5.3 Exploring New Musical Styles and Genres
	5.4 Ethical Considerations
	5.5 AI Music Cognition
	5.6 Future Directions

	References
	A Trials
	Abstract
	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Dataset Description
	3.2 Segmentation
	3.3 Cardiac disease classification

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	4.1 Benchmark Set
	4.2 Feeback Loop

	5 Results
	6 Discussion
	6.1 Threats to Validity
	6.2 Future Work

	7 Conclusion
	References
	Abstract
	1 Introduction
	2 Related Work
	2.1 Music and Computer Science Education
	2.2 Tools for Live Coding
	2.3 LLMs in Programming Education

	3 Methodology
	3.1 Tooling

	4 Results
	5 Discussion
	6 Conclusions
	References
	A Materials
	A.1 Lesson Plan
	A.2 Survey Questions

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 SAT Solvers
	3.2 SMT Solvers
	3.3 Model Counting

	4 Model Counting Games
	4.1 Setting Up the Grid
	4.2 Turn Alternation
	4.3 Defining the Winning Condition
	4.4 Model Counting
	4.5 Assessing Level Difficulty

	5 Model Counting for a 2D Platformer
	5.1 Grid Setup and Character Movement
	5.2 Enemy Avoidance and Path Constraints
	5.3 Model Counting and Path Enumeration
	5.4 Level Difficulty Assessment

	6 Conclusion
	References

